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ABSTRACT

Compu;er software is developed which makes it possibléito

use any general purpose comﬁuter with A/D conversion capability
as a PSK receiver foEﬁlow data rate telemetry processing.
Carrier tracking, bié;synchronization, and matched filter
detection are all performed digitally. To aid in the imple-
mentation of optimum computer processors, a study of general
digital processing techniques was performed which emphasized
various techniques for digitizing general.analog systems.

In particular, the phase-locked loop was extensively analyzed
as a typical non-linear communication element. Bayesian

estimation techniques for PSK demodulation were studied. A

hardware implementation of the digital Costas loop was developed.
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1. INTRODUCTION

Potential applications'of digital computers in cémmunications systems
continue to expand. Many ground stations have ready access to general
purpose computers that could be used as data processors. In this study,
we have developed'the digital signal processing techniques necesséry for
performing all the functions of an analog communication receiver.

The compufer software developed for the MDAC Digital PSK receiver
makes it possible to use any general purboéé computer (with A/D conversion
capability) as a receiver for low data rate telemetry processing. The
first step in the receiver processing is sampling ana A/D conversion.

The sampling can either be performed directly on the IF signal, or on the
quadrature components of the IF signal derived from mixing the IF with

a frequency oscillator. We have operated our receiver with both sampling
techniques without any noticéable difference in performance.

- The sampled quadrature components are A/D converted for further pro-
cessing by a set of digital algorithms which are roughly equivalent to a
digital Costas loop. The output of the Costas loop is mixed with the input
signal to develop the NRZ video signal. Bit synchronization is performed by
a set of digital algorithms which constitute an early-late gate type syn-
chronizer. The bit synchronizer uses four offset integrators to perform
phase detection along with a digital phase locked loop for tracking. A digital‘
integrator and threshold is then used for bit deteétion.

The lohic speed of general purpose computers makes this software useful
for data rates of 0-100 bits/second. Very low bit rates are difficult to
demodulate with analog processors due to the need for very long time constant

filters, precise component values, and very stable timing references. Thus,

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY » EAST
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the digital software discussed in this report provide a low cost, efficient,

and versatile so1ution to the low dafa rate receiver problém., This software

can also easily be modified to incorporate any data format desired. Measure-
ments of receiver performance (i.e., probability of error/bit) indicate that

the Digital PSK Recelver will operate as close to the theoretical optimum as

the logic speed and tracking bandwidths will permit.

The Digital Receiver Study and Implementation conducted under contract
4NASS—11424 for NASA GSFC, included the optimization of the MDAC digital PSK
receiver software (developed under contract NAS5-21021), an expanded study
of digital bit synchronization algorithms, and a preliminary study of digital
processing techniques which have no real analog equivalent. This report also
contains the principal results from the previous contract NAS5-21021, the
study of Digital Phase Lock Techniques. The results of both contracts were
combined since they are highly interrelated and are both incomplete without the
other. All system simulations for both contracts were performed on the MDAC
CDC 6400 and CDC 6660 computers, and all receiver software was optimized for

the GSFC CDC 3200 computer. .

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY » EAST
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2. DEVELOPMENT OF DIGITIZED PHASE-LOCKED LOOP

This effo;t consisted of designipg, implementing, and evaluating
a digitized phase-locked loop capable of tracking a carrier imbedded in
wide band noise. As part of the design effort, we compared the various
numerical techniques available for implementing a digital filter, synthe-
sized and analyzed the loop equations, and evaluated the performance by
determining curves of phase error variance as a function of the signal-to-
noise ratio, sampling rate, and quantization interval size. We also
investigated digital techniques for implementing AGC and acquisition
circuits. |

2.1. Synthesis of Equations

We selected a phase-locked loop filter by considering its -effect on
transient response (damping), bandwidth, and steady state tracking-offset
for a ramp input. Utilizing this filter, we analyzed the linear loop in
order to determine the filter and gain constants as a function of the
damping factor (z), and the undamped natural frequency (wg). Finally, we
analyzed the non-linear loop and developed numerical equivalents for it

using both the differential and difference equation approach.

2.1.1 Choice of Phase-Locked Loop Filter

The filter in a second order phase-locked loop can have any of

the forms given in Equations (1-3).

Fi(s) = )

F,(e) = () (o) (2)
a (s+b)

Fy(s) = sta <
S

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST
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We determined the effect of the three phase-locked loop filters on the
transient response (damping), bandwidth, and steady state tracking offset
for a ramp input to the associated phase-locked loop. The filter represented
by Equation (1) was not chosen because the bandwidth and phase offset both
depend on the loop gain and thus cannot be chosen independently. If the
filter given in Equation (2) is utilized, the filter constant (a) and the
loop gain are chosen to give the proper bandwidth and damping, and the filter
constant (b) 1s chosen to give an acceptable phase offset. Since the pﬁase
| offset will normally be made small, the constant (b) for Fz(s) will be near
zero, and F3(s) and FZ(;) are essentially the same. Therefore, the choice
must be made in terms of implementation complexity. Since the digital
implementation of F3(s) requires one less multiplication, it was selected
as the phase-locked loop filter. Fz(s) would be our choice for an analog
implementation because of the difficulty associated with implementing the
open loop integrator associated with F3(s). This decision is also.supported
by the fact that for an input consisting of a ramp of phase the third filter

form minimizes the mean squared error at the loop output.

2.1.2 Analysis of Linear Loop

A block diagram of the linearized phase-locked loop is given in

Figure 1 where the input signal is assumed to be of the form A sin(qot + Gin).

LINEARIZED PHASE - LOCKED LOOP

out

> S+ 4a >

»|x

FIGURE 1

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY ~ EAST
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The loop transfer function can then be determined as shown in
Equations (4) and (5).

' 4 AK (s+a
Sout  _ —Lr)—s

9in 1+ AK(s+a) . 4) -
s2
eout AK(s+a) ‘ )
0, s + AKs + aAK
in

This transfer function can then be put in the standard form given in

Equation (6).

2
eout chos + wg
= 5 ) 6)
in 8 + 2Zwps + wy
AK = 2wy ' (7
aAk = woz (8)

If the input amplitude, the damping factor (z), and the undaﬁped natural fre-
quency (wj) are known, the phase-locked loop gain and filter constant can be

determined from Equations (7) and (8) and are given in Equations (9) and (10).

K o= 2w (9)
a = w0/2?; (10)

The response of the above loop to a ramp input of slope w is given in Equation (11).

2082 e ~Suwot 7

eout(t) = wt - ——;T-==3 sin wy;\ 1-¢z7t (11)
gV 1-¢ , B

The above result shows that the effective time constant of the loop is

Swg

seconds. The noise and 3 db bandwidth of the above loop are given in Equations

(12) and (13).
5
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2 + i) (12)
Noise Bandwidth = BN = wg - 2t Hz
3 db Bandwidth = _wg 4 (2¢2 + 1) iJ(z;Z + 1% +1 He (13)
‘ 2n

2.1.3 Differential Equation Approach

With the loop parameters established in terms of standardized functions, we
proceeded to develop the numerical equivalents for the differential equations
which describe the loop operation. From the block diagram of the phase-locked

loop presented in Figure 2, the loop equations can be derived as shown in

Equations (14-17).

PHASE - LOCKED LOOP BLOCK

DIAGRAM
X SIN wgt e: o a
+YCOSw of §
1d8
PHASE K ‘K dt
21C08(w ot + 6) MODULATOR s

FIGURE 2
e =2{X sin wot + Y cos wot) cos (yot+6) (14)
e= -Xsin 8+ Y cos 6 + (second harmonic terms) (15)
2
d“e d
—-dtz = K(zg + a)e (16)
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de = aK [Y cos 8 - x sin e] + K T [Y cos 3 -X sin 6] 17)
2 . . )
dt

To avoid taking the derivative of the quadrature components, the above equation

can then be converted to the form shown in Equations (18) and (19).

de

3t = 2K (Y cos® - Xsin®) (18)
de
T -ct K (Y cos 8 ~X sin 6) (19)

One discrete time technique that was used to solve the above equations is the

1 .
Runge-Kutta Method. Using results obtained from Scarborough™, the equations
for this technique are shown in Figure 3. A second technique investigated was

Euler's Method. The equations for this method are also given in Figure 3.

A comparison of these and other techniques is presented in Section 2.3.
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DIFFERENTIAL EQUATION IMPLEMENTATION

A =-INPUT SINE WAVE AMPLITUDE
h =-TIME INCREMENT
6n = OUTPUT PHASE AT TIME t,
Cq = DUMMY VARIABLE C AT TIME t,
Xp Yp = QUADRATURE COMPONENTS OF INPUT SIGNAL AT TIME t
K = 2{wy/A
a = w°/2§
RUNGE - KUTTA METHOD
F, X, )=Kh(YCOSO - XSING )
G =FlOhp X Vo)
Al = hCn_2+ Gl
Bl = aGl
Gz = F(6 n-2 + Al/z' Xn_l, Yn_l)
Az =-h[cn_2+81/2]+ Gz
82 = an
G3 = F(6 n_2+ AZ/Z, X"_l, Yﬂ—l)
A3 =N Cn_2+ 82/2]'0'63
83 = 3G3
G4 = F(0 n_2+ A3, Xn, Yn)
A4 = h[Cn_2+ B3]+ G4
84 = 364
Cq = Cn—2 + (Bl + 282+ 283 + B‘)/B
Gn = en__z + (Al + 2A2 +2A3+ A4)/6
EULER'S METHOD
G =¥, €086,y - X,_1 SING,_
6, =6+ h Cpg + KNG
Cn = Cn_l + aKhG

FIGURE 3
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2.1.4 Difference Equation Formulation

The difference equation approach is basically a method of determining the
present value of the phase-locked loop output in terms of pést output values and
past and present input values. In order to formulate the difference equations

for the phase-locked loop, the block diagram of Figure 4 is utilized.

FINITE DIFFERENCE MODEL
OF PHASE — LOCKED LOOP

Xy SIN o t, ] 0
n Fa) n ®
£ ¥, COS g t,
2008 (w,t, +6,) HASE SAMPLE
h
MODULATOR [ :ONL%

FIGURE 4

The difference equations for the abcve model can be Written as shown in Equations

20-23).

)e =2 sin wt +Y cos wt ) cos (wt.+0) (20)
n Xh on n on on n
e =_Xn sin © + Y cos © + (second harmonic terms) ' (21)
n v n n n

2
0 (z) Az" + Az + Ay (22)
e(z) 3222 + Blz + B0
R »

Op = B, Ao * Ay en 1 *A,e, -8, 0 1 ~Bo ) (23)

z = Z-Transform operator

The first technique we investigated for implementing difference equations was
the Z-Transform method. In order to use this technique a hold circuit must be placed

in front of the phase-locked loop filter. F(z) can then be determined as shown

F@ = a-h g [Retak]] (26)
. s

9
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2 2
F(z) = (2kh + ;Kh )z + (akKh® - 2Kh) (25)
2 (z7 -2z +1)

The difference equation for the loop can be written as shown in Equations (26-28).

e =Y cos O - X sin & (26)
n- n-1

n-1_ ‘n-1 1 n-1

en-2= Y, cos © _,-X  sin ® 5 (27)

1
=200~ Opp+ 3 (2K + akh?) e 1+ (akhl - 2Kh) e, (28)

The second technique investigated was Tustin's Method. This technique corresponds
to trapezoidal rule integration. In order to obtain the difference equation

from the transfer function, the integration operators are replaced by

1

1 h(l+ 2z 7)
s c20 - 27 (29)
1 h2(1 + z'l)2 (30)
a2 41 - 2712
F(z) can then be obtained
8(s) _
F(s) = e(s) = "——_"—KSS; ak = K(%)‘f' akK ( ‘%‘) (31)
s
F(z) = F(s)
L. h2(+2"H?2 1 = h@a+h (32)
;2— 4(1-z 12 ’ 2(1-z71)
Py - 82 . G 4 am?GR s 4 1)
le(z) 4(22 -2z + 1) (33)

Since the phase output en depends on e, a unit delay must be added in the
feedback path. The results are given in Equations (34-37).

10
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e =Y cos 9 -~ X sin 9 (34)
n n n-1 n n-1
e 1 = Yn_1 cos en—2 - Xn—l sin 0 9 (35)
e 9= Yn-2 cos en_3 - Xn—2 sin en-2 (36)
8 = 2 . -8 .+ x (2Kh + akhde
n n=-1 n-1 4 n
(37)
1 2 1 2
+ E-aKh e 1 + Z—(aKh - 2Kh) e 2

The final technique considered was the Anderson, Ball, Voss Method. This tech-
nique consists of approximating the input signal by a polynomial in t and then
compiting the response at the output of the filter. The input signal was approxi-
mated by a second order polynomial, and the resulting difference equation is given
in Equations (38-41). The unit delay is again added in the feedback path because

of the problem mentioned with respect to Tustin's Method. Because of the complexity

associated with this technique, the derivation of this result appears in Appendix I.

e = Y cos?® - X sins (38)
n n n-1 n n-1
e 1 = Y 1 cos en—2 - X 1 sinen_2 (39)
= - i 40
en_2 Yn—2 cos en—3 Xn—2 s1nen_3 (40)
1 1 2
0 = - 8 = K =
. 26 1 -8 _,+ (GKn + oo aknd) e
(41)
2 1 2 1
+ 3 akh e 1 + ( 12 akKh™ - E—Kh) € -2

Equations (38-41) show that the Anderson, Ball, Voss technique gives

results that are almast identical with those obtained using Tustin's Method.
Therefore, for this particular filter, the higher order approximation used with
the Anderson, Ball, Voss technique does not increase the accuracy of the result.
We also investigated the Madwed-Truxal and the Boxer~Thaler Techniques. These

1
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methods are similar to Tustin's method except that different approximations

are used for tﬁe higher order integration operators. Our résults showeq that
these techniqués give only an insignificant increase in accuracy and are more
unstable than Tustin's method. Therefore, it was concluded that these techniques
did not merit further consideration.

2.2 Development of Computer Programs

We developed digital computer programs for the five techniques considered
in Section 2.1. These programs were written in the Fortran IV language which
is compatible with the CDC 3200 computer. The Runge-Kutta Method is shown in
Figure 5; Euler's Method and the Z-Transform technique is shown in Figure 6;
and Tustin's Method and the Anderson, Ball, Voll (ABV) Method is illustrated
in Figure 7. In these figures ADC (01) and ADC (02) represent the digitized
values of the sampled quadrature components which have been sent through the
analog to digital converters.

Mechanization block diagrams for the Z-Transform technique and for Euler's
method are shown in Figures 8 and 9 respectively. As is shown in the following
section, these two approaches give near optimum results for the non-linear
phase-locked loop. The blocks containing Z—l represent a storage register
which delays the signal by one sample period.

The most complex and time consuming portion of these implementations
is the sine and cosine calculation. One possible method of simplifying this
calculation is to compute new values of the sine and cosine from the previous

values by using the small angle approximation as shown in Equations (42) and

(43).

12°
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COMPUTER PROGRAM FOR RUNGE - KUTTA METHOD

ADC(01) = DIGITIZED VALUE OF X QUADRATURE COMPONENT FROM ANALOG CIRCUITRY
ADC(01) = DIGITIZED VALUE OF Y QUADRATURE COMPONENT FROM ANALOG CIRCUITRY
H = TIME BETWEEN SAMPLES

AK =KH

AA =a

Co =H/2

T =0,

™ =6p

™2 =0,

C =Gy

M =Gy

M2 =Ch.p

XM =X

YM =Yn

SMi =-Xp-1

YMI =¥n-1

XM2 =X

YM2 =Ypn-2

XM = ADC(01)

™M = ADC(02)

c3 =CM2*H

C2 = AK* (XM2 * SIN(TM2) -YM2 * COS(TM2))
Al =‘C3 + CZ

B1 =AA* C2

C4 =TM2+.5* Al

C2 = AK* (XM1 * SIN(C4) -YML * COS(CH)
A2 =C3+C6 * Bl +C2

B2 =AA* C2

X4 =TM2 +.5* A2

C2 = AK* (XML * SIN(C4) —-YMI1 * COS(C4))
A3 =C3+C6*B2+C2

B3 =AA* C2

C4 =TM2 + A3

c2 = AK* (XM * SIN(C4) -YM * COS(CH)
A4 =C3+H*B3+C2

B4 =AA* C2

T = TM2 + (A1 +2* (A2 +A3) + Ad)/6.

C = CM2 + (Bl +2 * (B2 + B3) + B4)/6.

Ym2  =Yml

XMz = xml

YMI =YW

XMl =XM

™ =Tmi

™ =T

M =cml

CM =C

FIGURE 5

13
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COMPUTER PROGRAMS FOR EULER'S AND THE Z-TRANSFORM METHOD

EULER’S METHOD
H  =TIME BETWEEN SAMPLES
AK =KH '
AA =2
T -0,
X =ADC(01)
Y =ADC(02
TEMP = AK * (Y * COS(T) -X * SIN(T))
T =T+C*H+TEMP
C =C+AA*TENP
Z - TRANSFORM METHOD
H  =TIME BETWEEN SAMPLES
Al =KH +|/§aKH
A2 -'baKH® -KH
T =6,
™ =0 n-1
T2 =6,
EMI = en__l
EM2 = en_2
XMl - Xn_l
Ml = Yn-1
XML = ADC(OD)
YML = ADC(02)
EMI = YML * COS(TMI) —XMI1 * SIN(TMI)
T =2*TMl -TM2 +Al *EMI +A2 * EM2
™ =Tmi
™ =7
EM2 -EM

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY » EAST
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COMPUTER PROGRAM FOR TUSTIN'S AND ABV METHOD

T

=8,

™M1 =6 n-1
T™M2=0p
EMl = 'en..l
EMZ= e,y
XM = Xq]
YM =Yp-1

H

Cl
C2
c3

TUSTIN'S METHOD

= TIME BETWEEN SAMPLES
— KH/2 + aKH2/2:
- akHZ/ .
- aKHZ/4 ~ KH/2

XM
YM
Em
T

= ADC(01)

= ADC(02)

= YM* COS(TML) ~XM * SIN(TMI)

=2 TM1 -TM2 .C1 * EM + C2 * EM1 + C3 * EM2

EM2 = EMI
EM1=EM

™2 - TML
TMi=T

e T——
i

ANDERSON, BALL, VOSS METHOD (ABV)

H - TIME BETWEEN SAMPLES
Cl - KH/2+ akHZ

C2 - 5aKH/6

C3 - aKH2/12 ~ KH/2

XM = ADC(O1)

YM = ADC(01)

EM = YM * COS(TML) —XM * SIN(TMI)

T =2%TML-TM2 < Cl* EM4C2* EMI . C3 * EM2
EM2 - ENI

EMI - EM

M2 - TML

™ -T

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY ~ EAST

15

MDC E0648
1 JUNE 1972

FIGURE 7



DIGITAL RECEIVER STUDY ' MDC EO0648
AND IMPLEMENTATION ‘ 1 JUNE 1972

MECHANIZATION OF THE Z-TRANSFORM METHOD

T

b J \ 4
SIN
[:j A moh (48+w°h) Y% (ooh (a)oh -45)
+ +
!n
cos
6“
? _
6n-1
2 _T— z-l
7! [e——a
FIGURE 8

16
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MECHANIZATION OF EULER’'S METHOD

X, : _ & €1 " + (3
—b? G)— 7! wgh s
' +

SIN -1
25!(1) oh z
L5 .
h e——
¥n
X
b
+
Ccos 6
. n-1 ,
i | )
FIGURE 9
cos (0 +AB) = cos AD cos O - sin AO sin O (42)
sin (0 +A0) = sin AO cos O + cos AO sin © (43)

If A® is small, this result can be simplified as shownin Equations (44) and (45).
cos (0 + AB)= cos O - A® sin O (44)
sin (0 + A0)= sin © + A0 cos © (45)

Starting with an initial value for sin 0 and éos 0, the above formulas can

be used to recursively evaluate the sine and cosine if A® is small. However,

2 . . .
Larimore shows that this technique will become unstable unless a correction

17
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factor is applied to the above calculation. He suggests that this correction
factor make the sum of the squares of the sine and cosine eaual to one as
shown in Equations (46-51).

K = correction factor

K> [cma2 (0 + A0) + sin® (0 + Ae):l =1 (46)

L
K =1/ [ cos? (6 + A0) + sin® (0 + AG)] 2 (47)
let E = cos2 (0 + 20) + sin2 @+ ar9)-1 (48)

: 21
e K = 1/N/1 + E = (1 +E) 2 (49)
(50)

1f E==0
1 (51)
K=~1 - 2 E

A Fortran program for continuously making the above calculation is given

in Figure 10.

ROUTINE FOR CALCULATING SINE

CMI = PREVIOUS VALUE OF SINE
SMi = PREVIOUS VALUE OF COSINE
DTHE = A6

SM = PRESENT VALUE OF SINE

CM - PRESENT VALUE OF COSINE
CMP = CMi - DTHE * SMI

SMP = SMI + DTHE * CMI

DN =1.5-0.5* (SMP **2 + CMP **2)
CM=DN * CMP

SM - DN * SMP

CMI = CM

SMI = SM

FIGURE 10

18
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Utilizing the CDC 6400 computer, ; timing calculation was made for both the

above routine and the standard subroutine used in the 6400 for computing the sine
and cosine. The results showed that the simple techhiéue required 49 wsec of central
processor time per iteration, while the more complex method required 251 usec per
iteration. Although the simple technique is 5 times faster, its accuracy degrades
as a function of both the number of calculations and the increment size, as shown
in Figure 11. If we sample at a rate ten times the maximum offset frequency, the
average output phase change would be 36°. Therefore, from the results given in
Figure 11, it would be necessary to update the sine and cosine generator after
only a small number of iterations, thus making the usefulness of this technique
juestionable. One possible method of updating the calculation would be to store
several values of the sine and cosine uniformly spaced between zero and ninety
degrees, and then selecting the nearest angle after a fixed number of cal-
culations. ‘In order to implement this approach logic statements must be

added to the program, which would result in an increased computation time. A
transient will also occur in the phase-locked loop each time an update is made.

A better solution to this problem might be to write a more efficient routine

for generating the sine and cosine or to use a table look-up technique. A
trade-off between accuracy and speed could then be made to determine the

optimum approach. Designing an optimum sine and cosine generator for use in

this phase-locked loop program represents a prime area for further study.

19
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~ ACCURACY OF SINE WAVE GENERATOR

10°

1 1 1
N = NUMBER OF

' CALCU LATI(I)NS /' /
N = 5m i t

N\
\

\ yd
S eral

\/ MEAN SQUARED ERROR

2 \ \——N= 2
N

N=10

1073 -

0 2 4 6 8 10 12 14 16 8 20 22 % % B
ANGLE INCREMENT - DEGREES
FIGURE 11
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2.3 Comparison of Techniques

In this section the five selécted numerical techniques are compared on
the basis of accuracy and speed for two linear second order filters and a
phase-locked loop with various inputs. The second order filter and phase-
locked loop were chosen because they represent a fypical linear and non-linear
subsystem component. The analog linear filter output can easily be calculated
and thus the error of the discrete filter measured.

2.3.1 DNon-Linear Phase-Locked Loop

As a first step in comparing the five numerical methods described in
Sections 2.1 and 2.2, we determined the central processor time required for
one iteration of each of the candidate techniques using the standard machine
subroutine for sin and cos. These‘times, which afply to our CDC 6400

computer, are given below.

Euler 240.3 usec
Tustin 273.7 wusec
Anderson, Ball, Voss 273.7 usec
Z-Transform 311.9 usec
Runge-Kutta 1334.0 usec

We also determined the mean-squared erfor between the output of a continubus
loop and the digitized implementation for both ramp and step inputs. The
ramp input signal was started at a sample point, while the step input was
begun at a point halfway between the sample points. The results of this com-
parison are given in Figures 12 and 13. These curves indicate that Tustin's
Method and the Anderson, Ball, Voss Méthod, two techniques which normally
give high accuracy, show results considerably below the other candidate
approaches. The reason is that a unit delay must be added in the feedback
path because of the non-linearity associated with the phase-locked loop. In
Section 2.3.2, the above techniques are compared for two linear filters, and

the increased accuracy of Tustin's Method and the ABV Method is evident.

21
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SIGNAL TO ERROR RATIO (dB)

SIGNAL TO ERROR RATIO (dB)

MDC E0648

1 JUNE 1972
COMPARISON OF NUMERICAL METHODS FOR A RAMP INPUT
60— '
N
§ \<- RUNGEI- KUTTA
50 |
> Z-TRANSFORM
o \% /
30
INPUT =t u ()
Sg =10 LOG (1./ ERROR?)
B,
g =1.414 RAD/SEC EULER — \ X
10
TUSTIN—]
0 ABVJI\
0.01 0.02 0.05 0.1 0.2 0.5 1.0
SAMPLE INTERVAL (SEC)
FIGURE 12
COMPARISON OF NUMERICAL METHODS FOR A STEP INPUT
60
0 \ RUNGE-KUTTA
Z-TRANSFORM
® § L~
30
INPUTaU(t)
Sg =10 LOG (1./ERROR &)
20—
¢ =107
wg =1.414 RAD/SEC EULER
o 2 T A\
TUSTIN
0.01 0.02 0.05 0.l 0.2 0.5 1.0
SAMPLE INTERVAL (SEC)
FIGURE 13
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The complexity of the candidate techniques was assessed by drawing
block diagrams, using the unit delay element, showing how the different
methods can be implemented. Diagrams for Euler's Method gnd the Z-Transform
Method wefe glven previously in Figures 8 and 9. A block diagram showing the
implementation of Tustin's Method and the ABV Method is given in Figure 14.
One diagram suffices fof these two techniques since they differ only by the
value of the constants.

The numerical techniques described above were then compared- using the
preceding information on accuracy, complexity, and speed as the criteria of
goodness. The Runge-Kutta Method was immediately discarded because of its
complexity and slowness. Tustin's Method and the ABV Method were discarded
because of low accuracy. This leaves the Z-Transform Method and Euler's
Method, ﬁwo techniques which give very similar performance as is evidenced by
the preceding results. A more quantitative indication of this fact can be
obtained by determining the central processor times (per .2 second interval)
for a constant value of error. The Z-Transform technique with a sample time
of 1/5 the loop time constant was chosen as a reference. This choice was made
because 1/5 the loop time constant is a near optimum sample time for the phase-
lecked loop as will be shown in the next section, and also because this point
is on the linear portion of Figure 12 and 13. The results are given below
for both the step and ramp input. Note that for a fixed error the Z-Transform
requires a slightly greater central processor usage than Euler's-Method for a

step input and slightly less usage for a ramp input.

" Ramp Input
Z-Transform = 311.9 yusec
Euler = 331.5 usec
Step Input
Z-Transform = 311.9 usec
Euler = 292.,3 usec
23
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)
-@
A3
7

e
n-1

—Q—
A2

71

n—

-

MECHANIZATION OF THE ABV METHOD
AND TUSTIN'S METHOD
1
6y =6y 2+ A1 g+ Ay 1+ Agey o

S 2

SIN
[
X
cos
N 3

Q>
o

£ -

FIGURE 14
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A more complete comparison of the numerical techniques is given in
Figures 15 and 16 whaere the signal to error ratio is plotted versus
the ratio of sample time to computation time. The above results in-
dicate the near equality between the techniques in terms of speed and
.accuracy. Since Euler's Method is slightly easier to implement than

the Z-Transform Method (the former technique requires three unit delay

elements whereas the latter necessitates four),

Euler's technique was

selected and is used to determine the simulation results given in

subsequent sections.

2.3.2 Linear Filters

MDC E0648
1 JUNE 1972

We also applied the five numerical techniques described above to the two

second order filters given in Equations (52) and (53).
2twps + w02
Hy(s) = — 3
s + 2zwps + wy
2
wo
H () = — )
s + 2zuwgs + wg

The difference equations for each of the numerical techniques is

derived in Appendix II for Hl(S) and HZ(S)' Utilizing these formulas,

the central processor time for the CDC 6400 computer was determined

for each of the methods and is given below.

Euler
Z-Transform
Tustin

ABV

Runge Kutta

25
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50.9
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62.9
214.5

274.1
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COMPARING NUMERICAL METHODS FOR RAMP
INPUT AS A FUNCTION OF COMPUTATION Tk

EULER

/-Z ~ TRANSFORM

RUNGE-KUTTA
INPUT = tu(t
S = 10 LOG (I/ERRORD)
¢=0.707 ]

wq = 1414 RAD/SEC

=]
T

~N
o

SIGNAL TO ERROR RATIO - dB -
S

10 '
\ \
ABV TUSTIN

° \

10 100 1000 10,000
SAMPLE TIME/COMPUTATION TIME

FIGURE 15
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COMPARING NUMERICAL METHODS FOR STEP INPUT AS A
FUNCTION OF COMPUTATION TIME

INPUT = u(t)
-
0 Z-TRANSFORM Sg = 10 LOG (1/ERROR?)
£=0.707
= 1414 RAD/s

50
2
v 40
=
-
<C
[+
o
e 30
o
w
2
_. RANGE - KUTTA \
= ,
<

10
\ EULER
ABV

0
\(Tusr IN

10 100 ‘ 1000 10,000

SAMPLE TIME/COMPUTATION TIME

FIGURE 16
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We also determined the mean-squared error between the output of the
continuous filter and its digitized equivalent for ramp and step sine
wave inputs,. where the step occurred at a sample point. Since the filter
is linear, the output of the continuous filter with the above inputs was
calculated. Graphs showing the signal to error ratio versus sampling
rate for the two filters are shown in Figures 17 and 18. Thus for a
linear system Anderson, Ball, Voss Method is significantly better than
Euler's Method due to greater accuracy. However, the non-linearity in

the phase lock loop makes Andersonm, Ball, Voss unappropriate for our applica-

tion.
COMPARISON OF NUMERICAL TECHNIQUES FOR LINEAR
FILTER WITH RAMP INPUT
120
INPUT = 4.8t (t)
100 Sg =10 LOG (1/ERROR?)
£=0.707
@ TUSTIN w o= 1414 RAD/s
o 80
E ANDERSON-BALL-VOSS
S
Z 60
e
=
2 wn
2
Z ~ TRANSFORM .\
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2.4 Determination of System Constraints

The effect of sampling rate, quantization noise, and dynamic range on digital
phase-locked loop performance is determined in this section.

2.4,1 Sampling Rate

The necessary sampling rate depends on the numerical technique being used, the band~
width of the phase-locked loop, and the offset frequency at the input to the loop.
Since Euler's Method has already been selected as the numerical method, only the
latter two effects will be considered here. The effect of sampling rate was
determined by measuring phase variance versus sample interval for a fixed input

noise spectral density using an all digital simulation. The input noise was generated
using a Gaussian random number generator., It was aSSuﬁed for all digital simulations
in Section 2 of this study that the quadrature components were prefiltered with an
integrate and dump filters. The resulting curve, Figure 19, shows that for the
phase-locked loop being considered (z = 0.707 and w, = 1.414 rad/sec) the sample
interval must be less than 70% of the loop time constant to keep the loop from

(N B )

going unstable. We also determined a graph of phase variance versus _ o n’, the

A2

loop signal-to-noise ratio, as a function of the sampling rate using an all
digital simulation. This graph, which is shown in Figure 20, indicates that a
serious degradation occurs for sample intervals between 20% and 40% of the loop
time constant. Therefore, a sampling interval of 20% of the loop time constant
represents a nearly optimum selection for the case of no offset frequency since
this value is well below the point of instability and also allows the digital
phase-locked loop to operate at a point where its transient performance approaches
that of the continuous analog loop. We next determined the effect of an offset
frequency on the sampling rate requirements. This was accomplished by computing

the mean squared value of the difference between the continuous loop output and the
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MCDONNELL DOUGLAS ASTRONAUTICS COMPARNY » EAST



DIGITAL RECEIVER STUDY
AND IMPLEMENT ATION

MDC EO648
1 JUNE 1972

PHASE VARIANCE VERSUS SAMPLE INTERVAL

o
=3
(- -3
=
~\
~
\ =
«
(—)
[
1
wn =
3
<
>
o
i
[
=
-«
o O
=
=4
(7]
]
=
w
.
a.
< —y
[+ 4 M o~
~ 1 s
[ i
™
s & &
1l (= -]
Q=
vy
=
=< =~ «“ ok ] ~ ™~ -
S =] P = = = = =3
ZCIV«‘J = JONVIHYA 3SYHd
FIGURE 19

31

MCDONRNNELL DOUGILAS ASTRONAUTICS COMPANY » EAST



DIGITAL RECEIVER STUDY ' MDC EO648
AND IMPLEMENTATION 1 JUNE 1972

L6 PHASE ERROR CURVE (DIGITAL SIMULATION)
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digitized loop for different frequency offsets. A graph showing the error versus
the dffsét frequency:for two different sampling rates ié given in Figure 21.

This curve sﬁows that decreasing the sampling interval frbm-ZOZ to 10%Z of the loop
time constant does not increase the accuracy significantly and also does not allow
operation at a much higher offset frequency. Therefore, if the offset frequency
is within the bandwidth of the loop, a sampling interval of 20% of the loop tiﬁe.
constant gives adequate results. For frequency offsets much greater than the

loop baﬁdwidth, the sampling rate is dependent on both the input filter and the
frequency of the offset. .This dependency will be given more attention in the
section on input filters.

2,4,2 Quantization

In order to determine the effect of quantization on the operation of the phase-locked
loop, we analytically determined the phase error variance as a function of the
number of quantization levels. If the quantization error is assumed to be uniform,

the noise variance caused by this error is given by the following formula.

2
% - az o (54)
12 :
a = VP (55)
) L )
Vp = peak voltage
L = number of positive quantization levels

s

If it is assumed that adjacent samples of the quantization noise are independent
the phase variance at the output of the linearized phase-locked loop can be
determined as shown below. It is also assumed that the noise samples are

held for one sample interval.

2 'Nan

No =  Specttral density of quantization noise
- 2

No | 2 GQ h
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h. = sample interval

A = amplitude of input sine wave

Bn'= hoise bandwidth of PLL
2
(72 = _Y%_;.I;E (57)
A

The phase variance was also determined using a digital simulation to check the
analytical results. In order to get worst case results the offset frequency of
the input sine wave was made small (.1 rad/sec). For low offset frequencies adja-
cent samples of quantization noise are no longer independent causing the loop to
be less effective in filtering out quantization noise. A graph of phase variance
vgrsus'the number of quantization levels for both the theoretical and the digital
simulation results is shown in Figure 22. As the number of levels is increased,
adjacent samples of quantization noise become more decorrelated and the two curves
approach each other. The interaction between thermal noise and quantization noise
was investigated using a digital simulation to determine the output phase variance
as a function of the number of quantization levels for different values of the output

2
signal-to-noise ratio (——AL—J. This graph, which is given in Figure 23, shows

ZNOBn
that the output phase variance is approximately independent of the number of
quantization levels if the number of levels is greater than 16. Figure 23 shows
that for 16 or more levels the standard deviation of the phase output is less than
1 degree for a wide range of signal-to-noise ratips. ‘A phase error of this value
in a PSK system would cause less than a 2 x 10_3 dB reduction in the effective

output signal-to-noise ratio.

2.4.3 Scale Factor

Another important system constraint is the dynamic range of the A/D converter which
precedes the digital computer. If the signal amplitude is greater than the dynamic

range of the converter, signal energy will be lost resulting in a lower effective
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PHASE ERROR VARIANCE VERSUS THE NUMBER OF QUANTIZATION LEVELS
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input signal-to-noise ratio. If the dynamic range 1s made much greater than the
signal amplitude, the quantiiation noise will be increased Secause of the increased
size of the quantization interval. Therefore, the dynamic range of tﬂe converter
should be set somewhere between the above extremes. We detefmined the output
phase variance as a function of the number of quantization intervals for several
different dynamic range settings. These results showed that the output phase
variance was independent of the dynamic range if it was greater than (A = 30),
where A was the input sine wave amplitude, and o is the input noise variance. A
graph of the output phase variance versus the number of quantization levels as

a function of the output signal~to-noise ratio and the dynamic range of the A/D
converter is shown in Figure 24. This curve shows that the phase variance is
reduced for a low number of quantization intervals as the dynamic range approaches
the input singal amplitude. Our results indicate that a dynamic range of (A + 20)

1s a good compromise value.
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2.5 Automatic Gain Control (AGC)

Two AGC techniques were investigated. The first approach consisted of
placing a bandpass limiter at the input to the phase~locked loop. We also
investigated a slight variation of this method, using a sawtooth comparator
in combination with the bandpass limiter. The second technique considered
was to use a closed loop AGC preceding the phase-locked loop. Both of these
techniques are analyzed in Sections 2.5.1 and 2.5.2, and computer implementations
are determined.

2.5.1 Bandpass Limiter

A block diagram of the phase-locked loop preceded by a bandpass limiter

is given in Figure 25.

PHASE-~-LOCKED LOOP WiTH
INPUT LIMITER
X SINw t BAND v
N YCOSw:t ‘{ LIMITER  fei FTLTI,E?QSS " N s:a
1
COS (w t+6) K K dt

FIGURE 25

Assuming that the input signal is a narrow band process and that the higher
harmonics will be removed by the bandpass filter following the limiter, the phase

locked loop input will have the form given in Equation (58).
= I §
V = sin (wot tan X) (58)

The error signal at the input to the filter is given in Equations (59) and (60).
It should be noted that the 1/2 factor resulting is omitted and considered part

of the loop gain.
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(59)

(1)
]

. -1Y
sin (tan X o)

X
e = T ——% cos 6 - X sin 6
VX +Y QXZ +Y

The loop equation is then determined as shown in Equations (61) and (62).

(60)

d 1doy _ o d (61)
ir & oo (Gt e
2 (62)
d™e de
5 = aKe + K at

dt

To avoid taking the derivative of the input signal, the above equation

I« [+
can be written as two first order equations by making the substitution T aKe,

de 3

Y X
= agK F- COS 0 - —==—== sin e] : (63)
dt [\l—xi+3{j Vi + v2
do Y X .
=T =c¢ + K —pF===scos 6 - sin 8 (64)
dt VX + Y QX: + Y

Using Euler's Method, the difference equation for numerically solving the.

above equations will have the form given in Equations (65-67).

1 .
G = ?=j?f==?3== [Yn—l cos en_l,- Xn—l sin en_l] (65)
n—T n-1
6 =106 + hC + KhG (66)
n n-1 n-1
¢c =¢C + aKhG (67)
n n-1

Using the Equations (65-67), a Fortran computer program was written for
Euler's method and is given below.

H = h = sample interval

AK = Kh

AA

a

T = phase output of loop

41
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XXA = ADC(01)
YYA = ADC(02)

XNOR = SQRT (XXA**2 + YYA**2)

XA = XXA/XNOR

YA = YYA/XNOR

TEMP = AK*(YA*COS(T) - XA*SIN(T))

T =T+ C*H + TEMP

C = C + AA* TEMP
A slight variation on the preceding technique consists of using a bandpass
limiter preceding the phase-locked loop and a sawtooth comparator (inverse
sine circuit) in front of the loop filter. The reéulting block diagram is

presented in Figure 26.

SAWTOOTH COMPARATOR

XSiNo.t |
0 | BAND PASS
LIMITER el
+Y C0S ot FILTER

€0 (wgt+6)

FIGURE 26

Using the same methods as were employed for the limiter, Equations (68) and

(69) were derived.

de = -1Y _ (68)
dt aK (tan X 8)

de _ -1Y _ (69)
Tl + K (tan X 8)
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A Fortran computer implementation of this technique is given below.
H=h= sample interval
AK = Kh

AA

a

T = phase output of loop

XXA = ADC(01)

YYA = ADC(01)

ANG2 = ATAN2 (YYA, XXA)
ANG2 = ASIN (SIN(ANG2-T))
TEMP = AK*ANG2

T =T+ C*H + TEMP

c

C + AA*TEMP

A curve showing the output phase variance as a function of the input
noise spectral density for a phase-locked loop with, and without, a limiter
is shown in Figure 27. This curve shows that as the input noise spectral
density increases, the limiter reduces the gain of the loop, and as a
fesult the output phase variance is reduced with respect to the loop with
perfect AGC. A similar curve for the sawtooth comparator is shown in
Figure 28. Since the sawtooth comparator exhibits more gain for large phase
offsets than a loop with a sinusoidal comparator and a input limiter, the
phase variance is greater for the sawtooth comparator configuration as low
input signal-to-noise ratios. It should also be noted that the sawtooth
comparator will track the input variations more effectively than the techniques
described previously.

2.5.2 Closed Loop AGC

A block diagram for an analog configuration of a closed loop AGC is

given in Figure 29.
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The incremental transfer function for this loop will have the form given

3
in Equations (70) and (71) according to Povejsil, Raven, and Waterman.

AEout - 1
AEin 1+ KZF(S)
dE.
K2 = _out
d
eg = constant
in

(70)

(71)

In order to keep the loop gain independent of the input level, an exponential

gain characteristic was used.

to reduce the steady~state offset between Eo

and V
ut re

f

An integrator was chosen for the loop filter

to zero. The resulting

loop transfer characteristic is given in Equations (72-75).

AEout: - S
AEin s + K2
Eou? G(eg) Ein
Be
G = g
(eg) e
E
~_out =K, = E
aEe Ein = constant 2 in
g
46
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(73)

(74)
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A block diagram of the digital implementation of this circuit is shown

* below in Figure 30.

IMPLEMENTATION DIAGRAM

FOR AGC LOOP

X X (¥

+ SN +

v b h s

+ - +

Y X | (¥
vref Z—l ‘#
[ eKlep) i

FIGURE 30

A Fortran computer program for implementing the above technique is given

below.

GAIN = K. /v _
2 ‘ref

At = Kh

AA = 3

T = phase output of loop

RE =
REF Vref

X = G*ADC(01)

Y = G*ADC(02)

ENV = SQRT (X**2 + Y*2)
ERR = ENV - REF

EIT = EITM + ERR*H

EITM = EIT
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G = EXP (~GAIN*EIT)
TEMP = AK*(X*COS(T) - Y*SIN(T))

T =T+ C*H + TEMP

c C + AA*TEMP

2.5.3 Comparison of Techniques

In order to show that the two AGC implementations given above performed

properly, we tested each technique by jittering the amplitude of the input

signal and measuring the variance in the gain of the phase-locked loop.
For a 5% input amplitude variance the gain of the loop varied by 3.4%

for the closed loop configuration and 1.1% for the limiter. This result
would be expected since the limiter has an effective time constant which
is infinitely small, while the closed loop configuration that was investi-
gated had a time constant of 5 seconds. The operation of the AGC circuit
was also demonstrated by showing the effect of the input signal to noise
ratio on the tracking ability of a phase-locked loop preceded by one of
the above AGC circuits. Utilizing a digital simulation, a sine wave
phase input was applied to the loop, and the phase error variance was
determined as a function of the input signal-to-noise ratio. A graph

of these results is shown in Figure 31. For input signal-to-noise ratios
above zero dB the output phase variance approaches the theoretical value
for white noise passed through a linear loop. This indicates that the
phase~locked loop is tracking the input sinusoidal phase variation

with negligible error. As the input signal-to-noise ratio is reduced,
the loop gain 1s reduced and the input phase variations can no longer

be tracked. Figure 31 indicates that the threshold occurs at an input
signal-to-noise ratio of -4 dB for the limiter and - 7 dB for the closed

loop AGC with a 5 second time constant. Therefore, although the limiter

48.
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PHASE ERROR VARIANCE - RADZ

AGC reduces the gain variations by more than the closed loop configuration,

it has a higher threshold than the latter method.

These results indicate that the limiter gives better regulation
than the closed loop AGC, but it has a higher threshold. The previous
Fortran computer programs showed that the limiter type AGC is faster and
less complex than the closed loop approach. Since speed and complexity
are important considerations in implementing a digitized receiver, the

limiter AGC was chosen as the optimum method of obtaining automatic gain

control.
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2.6 Acquisition

We analyzed and compared three approaches to phase-locked loop acquisition;
the swept frequéncy method, the Fast Fourier Transform method, and the free-
running mode. The first technique consists of beating the input signal with a
swept frequency oscillator and passing the resultant signal through a low pass
filter and a threshold detector. The second approach consists of computing the
FFT of N input samples and then determining the Fourier coefficient of maximum
amplitude. The final method allows the phase-locked loop to pull-in with no

external controls.

2.6.1 Swept Frequency Method

The first technique, which was studied by Sterliﬁga, consists of beating
the input signal with two oscillators that are 90° out of phase, filtering the
resultant signal, and performing a threshold detection to determine when the swept
frequency equals the input frequency. The two out-of-phase oscillators are
necessary since the phase of the input signal is not known and thus a zero output
could result if only one oscillator was used. A block diagram of this configura-
tion is shown in Figure 32. The input multiplications shown in this figure are

derived in Equations (76-81).

E; = X sin w t +Y cos wot (76)

E,op = 08 (0 t+ 8) (77)

8 = wot - ktz (78)
w

=_h 79

k =z (79)

T = sweep time

q EiEvco = ~X sin 8+ Y cos 9 (80)

i EiEvco

[t]
[

X cos 6 + Y sin 8 (81)

1]
4
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Each of the quadrature components is passed through a low pass filter

and an absolute value circuit. The resultant sum signal is applied to a
threshold detector. The frequency of the sweep at the time the threshold

is crossed is used as the initial condition on the frequency of the phase-
locked loop. If this frequency is within the pull-in range of the phase-
locked loop, the loop will almost instantaneously acquire the signal.

The time constant of the low pass filter was chosen to maximize the

ratio between the peak signal at the input to the threshold detector

and the standard deviation of the noise at the output of the low pass
filter. The measurement of peak signal to rms noise at the filter output is

only an approximation of the actual signal-to-noiselratio since the

noise should be taken at the input to the threshold detector. However,
the absolute value ctrcuit makes this difficult, and thus the

approximate measurement was made. A graph of the signal-to-noise ratio
versus the ratio of the low pass filter bandwidth squared to the sweep
rate is shown in Figure 33. This graph shows that the signal-to~-noise
ratio is maximized for(wiP/ZK)equal to 0.1715. However, this ratio can
be varied between 0.1 and-0.275‘w1th a resulting loss in signal-to-noise
ratio of less than 0,1 dB. A computer program for the above acquisition
circuitry with the phase-locked loop included is shown in Figure 34.‘
When the variable E is greater than the threshold, the variable C is set

equal to the swept frequency at that time, and the phase-locked loop

calculations are begun at statement 2.

2.6.2 Fast Fourier Transform Acquisition

A second method for performing phase-locked loop acquisition is to
utilize the Fast Fourier Transform (FFT). This technique consists of

reading N samples into the computer and calculating the Discrete Fourier
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‘Transform (DFT) which is given in Equation (82).

N-1

A= 2 X exp(-2mirk/N) (82)
k=0
r=20, 1, -——, N-1
Xk = input samples
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COMPUTER PROGRAM FOR ACQUISITION

WH = SWEEP START FREQUENCY AND ONE HALF OF SWEEP RANGE
RK  =TWICE THE SWEEP RATE
H = TIME INTERVAL

AK = LOOP GAIN
AA = FILTER CONSTANT

THR = ACQUISITION THRESHOLD
CON =e “ppth

TTT =SWEEP TIME

IF(E.LT.THR)GO TO 1
C =WH-2.«RK+TT

GO TO2
X = ADC(01)
Y = ADC(02)

THET = WH+TT — RK« (TT**2)
€S =COS (THET)

§$  =SIN (THET)

XX = X*CS+Y*§§

YY =-X*$S$+Y*CS

EX = XX+ (EIX - XX)* CON

EX =EX
EY =YY+ (EIY - YY) * CON
EIY =EY

E = ABS (EX)+ABS (EY)
TT =TT+H

IF (TT - GT - TTT) TT=0
GOTO3 |

X = ADCOI)

Y  =ADCO2)

TEMP = AK * (Y*COS(T) -X*SIN(T)) |
T =T+CxH+TEMP

C = C+AA » TEMP

GO TO2

The FFT algorithm removes redundant operations from the calculations
and reduces the number of operations from N2 to 2N 1og2N.

of N this is an extremely significant reduction.

MDC EQ648
1 JUNE 1972

FIGURE 34

For large values

The listing of a digital

computer program for implementing the FFT algorithm is given in Figure 35,
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DIGITAL COMPUTER PROGRAM FOR FFT GENERATION

COMPLEX W, X, Y
N = NUMBER OF SAMPLES
N=2"L
X (J)=INPUT DATA
Pl = 3.141592653589793
BBN=N
AR=2*Pi/BBN
=0
K=1
NA=N/2
KK=NA
DO2J=1,L
IF(MM. EQ.1) GO TO 9
MM =1
DO1i=1,K
IM=(-1)*KK
AA = IN*AR
W=CMPLX (COS (AA), - SIN (AA))
DO11l=1, KK
NZ=11+1IM
NQ=NZ+1IM
Y (NZ)= X (NQ) + W* X (NQ + KK)
Y (NZ + NA)= X (NQ) - W* X (NQ + KK)
1 CONTINUE
GO T0 12
9 M¥=0
DO10 Y =1,K
M =(1-1)*KK
AA = IN*AR
W=-CMPLX (COS (AA), - SIN (AA))
DO 10 11=1,KK
NZ=11+1IM
NQ=NZ+1IM
X (N2)=Y (NQ) + W*Y ( NQ+ KK)
X (NZ+ NA) =Y ( NQ) - W*Y (NQ + KK)
10 CONTINUE
12 KK = KK/2
K=2*K
CONTINUE
X(J)=OUTPUT DATA IF L IS EVEN
Y(J)=O0UTPUT DATAIF L IS ODD

>N o NN

OON

FIGURE 35

The program, which was written in Fortran IV, determines the FFT of a sequence

of N complex input samples X(K). This program uses complex input samples which
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is of great advantage since the Fourier Transform of the IF signal (X cos w t +
Y sin wot) can be obtained by frequency shifting the transform of (X + jY) as

is shown in Equations (83) and (84).

(83)
F X + jY) = F(w)
F (X cos wt + Y sin wot) =-§- Fx(w - ‘wo) (84)
1
+ 2 F (w+ wo)

The sampling rate must be greater than twice the maximum frequency of the sampled
signal. The total number of samples determines the separation between the
discrete spectral components. The program shown in Figure 35 has been written
such that N must be an integral power of two (N = ZL). This ¢onstraint is not
usually restrictive in using thils program for acquisition since the number of
samples can usually be increased such that N becomes an integral power of two. The
preceding program stores the DFT of the input signal in either the X or Y matrix
depending on whether L is even or odd. The relationship between the coefficients
Ar and the elements of the output matrix (assumed to be X for this example) is
given below.

Ar = X(r + 1)
If the function (X + jY) is transformed, where X and Y are the quadrature
compohents of the input signal, the complex value of the various spectral

components are found in the storage locations given in Equation (85).

1
1T (85)
h = sample interval
N = number of samples
X(l)—-»fo X(N) ——pfo - fl
X(2)—>f0 + fl X(N--l)-—bfo - 2f1
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X(3)—>fo + 2f1 X(N-2) —p fo - Z*}f1

.-
.

N N N -y

After computing and storing the complex Fourier coefficients, the magnitude of
each coefficient 1s determined. The estimate of the input frequency is then

made by determining the frequency associated with the complex Fourier coefficient
of maximum magnitude. This value of‘frequency is then inserted as an initial
condition in the the phase-locked loop as was done with the swept frequency method.

2.6.3 Free-Running Acquisition

This technique allows the phase-locked lcop to pull-in without any external
control. 1If the initial frequency offset is within the pull-in range of the loop,
acquisition will occur. However, for large frequency offsets the loop will begin
slipping cycles, and pull-in will occur in a much longer time. To show this effect
we measured the mean and variance in pull-in time as a function of the frequency
offset between the VCO and the input ;ine wave and the output sigﬁal-to-noise
ratio. This investigation showed that the average pull-in time was independent
of the output signal-to-noise ratio. A graph of pull-in time versus frequency
offset is shown in Figure 36. The variance in pull-in time, which is affected
by the output signal-to-noise ratio, is graphed in Figure 37 as a function of
the frequency offset.

2.6.4 Comparison of Techniques

The free-running acquisition approach was discar@edvbgcausg.of the excessive
pull-in time required for large frequency offsets. The two remaining techniques
were compared using digital simulation. The probability of acquisition was
determined as a function of the sweep rate for two different output signal-to-
noise ratios. In the simulation a correct acquisition was assumed to have
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MEAN PULL-IN TIME VERSUS OFFSET FREQUENCY
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FIGURE 36
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occurred if the difference between the estimate of the input frequency and the

input frequency was within the pull-in range of the phase-locked loop.

The loop

pull-in range is considered to be the range over which the loop will acquire

without slipping cycles. The results of this investigation are shown in Figure 38.

The sweep rate for the FFT technique is determined by the frequency range, the

sample interval, and the number of samples.

Figure 38 indicates that the FFT
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'PROBABILITY OF ACQUISITION VERSUS SNEEPRATE
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FIGURE 38

technique gives much better results than the sweep control method. This is due
to the fact that the FFT method is similar to a parallel bank of matched filters
centered on each of the spectral lines, while the latter method approximates
a single matched filter which is switched from one spectral line to another.
Therefore, the integration time is much longer for the FFT technique and the
output noise power is reduced.

The main criteria used to choose between the acquisition techniques is
speed and simplicity. One of the big disadvantages of the FFT technique is
that it must be done sequentially. This means that no calculations can be made

until all N samples are read into the digital computer, and that the digital
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pProcessor must be capable of storing these N samples. These constraints
decrease the speed and increase ihe complexity associated with the processor.
The calculations associated with the sweep control method can be made between
samples and thus fewef modifications are necessary with this technique.
Therefore, the sweep control method is the recommended approach for solving
the acquisition problem.

2.7 Hybrid Simulation

One of the important decisions associated with implementing a digital processor
is the determination of the filter which precedes the A/D converter. We first
determined the effect of three candidate input filters, an integrate and dump filter,
a single break low pass filter, and a double breag low pass.filter,on s&stem perfor-
mance. We then set up a hybrid simulation of the digitized phase-locked loop and

determined the phase error variance as a function of noise-to-signal ratio.

2.7.1 Input Filter

Each of the quadrature components is filtered before being passed into the digital
computer. This filter, which precedes the sample and hold circuit, eliminates the
second harmonic of the input signal and reduces the loss éaused by aliasing. If it
is assumed that the input signal remains constant between samples, an integrate
and dump filter, which integrates during the time between samples, is the optimum
filter. The main problem associated with this technique is that a timing signal
must be sent from the digital computer to dump the'external integrator at the
appropriate time. Because of the extra complexity associated with the above method,

two alternative techniques, a single break low pass filter and a two break low

pass filter, were considered. The transfer functions for these two filters are

given in Equations (86) and (87).

Fl(s) = o (86)
s + a
2
Fy(s) = .___Oi.__?._ (87)
(s + a)
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In order to compare the three different filter implementations, we assumed that
the input filter bandwidth was wide enough that the effective noise spectral
density of the éampled and held input éignal is constant over the noise band-
width of the phase-locked loop. The loss in input signal to noise ratio is then

defined as given in Equation (88),

5,(0)

L =10 log
10 N [F )| 2

(88)

L = loss in input signal-to-noise ratio (dB)

w = maximum offset frequency
max

F(w)= filter transfer function
No = noise spectral density at filter input

S5, (0) = effective noise spectral density at the output of the

sample and hold circuit
For the integrate and dump filter SN(O) is equal to No' Therefore, the only
loss results from the decrease in amplitude of the maximum offset sine wave at

the output of the integrate and dump filter. This loss is then given in

Equation (89).

L - 20 10n, [22208) @

R = fs/fmax
fS = gampling rate

f = maximum offset frequency
max

The increase in noise spectral density at zero frequency for the input filter

F(s) was determined from Equation (90).

s (0) @
n _1 2 (90)
—ﬁ;__ = 3 + g o, F(nws)
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This formula is determined from the fact that the spectral density at the input
to a sampler is reproduced at multiples of the sampling frequency at the output

of the sampler. Using the above relationships, the loss for filters Fl(s) and

Fz(s) is given in Equations (91-94),

1 » —'—l——,—-—_—-‘-
L. = 10 1lo 2" ngi 1% (nK)?2 (91)
1 10
__®*
R2 +K2 '
o : 2
1 1
L., = 10 lo 2 * “;1 [1 + (nk)z] (92)
2 810 242 |
7]
R% + K2
K= fs (93)
£
LPF
R=t/f ‘ (94)
S max

In order to minimize the loss for each of the two filter configurations, we
selected a value for R and plotted L as a function of K. One of these graphs

for the second order filter for R=10 is shown in Figure 39 . This cur?e shows

that the minimum value of L2 is .683 dB and that it occurs at K = 2.26. Utilizing
the digital computer, we repeated the above procedure for different values of

R. A graph.of the minimum value of the loss versus R is shown in Figure 40

for all three filter configurations. Figure 41 shows a plot of the optimum

value of K versus R. The integrate.and dump circuit is not shown in this final
figure since the ratio of sampling rate to filter bandwidth is a constant. The
above results show that the integrate and dump filter is 1/2 dB better than a

second order filter and 1 1/4 dB better than the first order filter for values

of R equal to ten.
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COMPARING INPUT FILTERS (K VERSUS R)
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FIGURE 41

2.7.2 Results
Utilizing our 1 MHz "front end," the adage 770 A/D converter, and the CDC 6400
computer, a hybrid simulation of the digital phase-locked loop was conducted.

A simplified block diagram of the configuration used is given in Figure L2.
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HYBRID CONFIGURATION

x .
LPF [ e
INPUT SINE WAVE
) COSwot
+ BAND A/D DIGITAL
PASS CONVERTER COMPUTER
FILTER B ADAGE cbe
+ 770 6400
NOISE |
Y
LPF
Sleot

FIGURE 42

Figure 43 shows strip chart recordings of the input quadrature components and
the phase output of the loop which was fed back from the digital computer. The

phase error variance was then determined by generating an internal phase
reference using a second phase-locked loop with a bandwidth 300 times smaller
than the first. The only restriction on this technique is that the second

loop must be allowed to run for a sufficient length of time before the phase error
calculation begins so that any initial transient has decayed off. Another

method of generating a phase reference would be to pass the non-noisy

signal through an identical "front end'" and compute the phase in the digital
computer, This approach was discarded because of tﬁe problems associated with

balancing the two channels and the added complexity associated with adding

the two extra cﬂannels. Figures 44 and 45 show the phase error variance versus
N B

( ° ) for the phase-locked loop without a limiter and with a limiter respectively.

A2

For both of these simulations the input filter consisted of a single break low pass
filter with a 45 Hz bandwidth. We also set a .2Hz offset between the input frequency

and the IF center frequency.
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2.8 Evaluation of Performance

In this section we comi:ére the results obtained during this study on

phase error variance, phase-locked loop threshold, and acquisition with the

results obtained by other investigators.
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2.8.1 Phase Error Variance

In order to validate the results obtained during this portion of the study, we

determined the relationship between the phase error variance and the noise-to-

signal ratio using both an approximate technique, quasi-linearization, and an
exact approach, the Fokker-Plank Method. Quasi-linearization consists of re-
placing the nonlinearity with an equivalent gain which is determined from a
knowledge of the statistics at the input to the nonlinearity. If it is assumed
that the input to the sine nonlinearity in the phase-locked loop is Gaussian

with a variance 02¢, Develet5 shows that the equivalent gain can be deter-

mined as given in Equations (95) and (96) .

R —62/20¢2
AK “/” '
G = e cos 6 do (95)
EQ A o 7
2
—04°/2
gg = AKe ¢ (96)

A = input amplitude

K = VCO gain

This value of gain is substituted into the equation for phase variance at the

output of the linear loop.

2 2/2
A2 _e 9 1+ 452e-0¢
Nan og 1+ 4 2 ' (97)

Co2
B, = noise bandwidth of loop for 0¢ =0

£ = damping ratio of loop

A graph of this equation is given in Figure 46 along with the results obtained
using our digital simulation. The maximum difference between the digital simulation

results and the quasi-linear approximation is about 20%. As the phase error increases,
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FIGURE 46

the Gaussian approximation no longer holds, and thus we would expect the curves to
deviate as they do. A better method of validating the simulation results is to
solve the Fokker-Plank equation of the phase-locked loop for the probability density

of the phase error. The exact value of the phase error can then be determined as
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a function of (Nan/Az). However, no exact solution has been obtained for a second

order loop with the filter F(s) = Egi. Therefore, we digitally simulated a phase-
locked loop with the filter F(s) = ;f‘;—a for which a solution to the Fokker-Plank

Equation can be obtained. Viterbi6 and Lindsey and Tauseworthe7 show that the
ﬁrobability density function of the phase error and the phase error variance will

have the form given in Equations (98 - 100).

o cos ¢
p(¢) = B NON =T <¢p < (98)
a = A2 | - (99)
Ngﬁl )
2 i : n '
o = w4 2 D" 10 (100)
o 3 n=1g I,@) .

A graph of o% versus =+ is shown in Figure 47 . This plot shows that there

a
is negligible error between the calculated and experimental results for a sample
time of .05 seconds. For slower sampling rates, the curves will deviate slightly

vecasue of errors associated with the numerical technique. Fora-= 2 the error

between the two curves was 15% for a .l second sampling interval and 30% for

a .2 second interval.

2.8.2 Phase-Locked Loop Threshold

There are several different ways of defining the phase-locked loop.threshold.
The method employed by Viterbi6 is to develop a mbdel and then determine when
the actual phase variance deviates by a specified amount from that predicted

by the given model. In this section we will arbitrarily select the linear model
as our standard and assume that the threshold occurs at the point wﬁere the
error equals 50%. Using this criterion, thebthreshold noise~to-signal ratio, ‘

Nan/Az, is given for several different loop configurations and sampling

intervals, h.
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2

* CONFIGURATION : h(sec) Nan/A

NO AGC .05 .3

NO AGC .1 .25

NO AGC .2 .15

NO AGC A .05

SAW TOOTH COMPARATOR 2 .16

LIMITER W2 .3

These results show that the threshold signal-to-noise ratio is increased as the

sampling rate is increaged. We have already shown that the results obtained with
a sample interval of .05 seconds closely approximate the results obtained for an
analog loop. For a .2 second sample interval, the threshold is increased by 3 db

in going from the analog to the digitized lbop.

2.8.3 Acquisition
We measured acquisition time as a function of the initial frequency offset and the

results are presented in Section 2.6. Viterbi8 determined an approximate formula for

acquisition time for the second order phase-locked loop with filter F(s) = E—i—i,
which is given in Equation (101).
=1 {[_1_ dg (o) ]2 -&ai}

a AK  dt : (101)

AK = loop gain

a = filter constant

s . _ a

¢A = limit of frequency lock = f QKE*)

The above approximation becomes increasingly crude as [%E- Q%égl] approaches
$A' A graph of this function is given in Figure 48 with the experimentally
measured points superimposed. These results indicate that there is negligible

difference between the digital simulation results and the theoretical values.
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We also measured the probability of acquisition using a digital simulation of

a system using a swept VCO. This:technique is different from the one previously
mentioned (Section 2.6.1) because the VCO sweep is not'stopﬁed wheﬁ it is within

the pull-in range of the loop. The loop must actually begin tracking the phase
.input which consists of a ramp of frequency. A graph of the results of this
investigation is given in Figure 49 for an output signal—to—néise ratio of

10 dB. Also plotted on this graph are experimental results obtained by Frazier

and Page 9 for an analog loop. They used a second order loop with a lead-lag filter

of the form F(s) = sta However, since (a) is 1,000 times (b), this configuration

s+b*

COMPARING DIGITAL SIMULATION AND THEORETICAL
RESULTS FOR PROBABILITY OF ACQUISITION
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closely approximates that used in the digital simulation. The maximum error
between the results for the digitized and the analog loops is 17%. This error
is not significant when we consider the difficulty in determining whether
acquisition has taken place and the fact that both results were experimentally
obtained. The results for the digitized loop would also be closer to the

analog results if the sampling rate was increased.
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3. DEVELOPMENT OF DIGITIZED PSK RECEIVER

3.1 Synthesis of PSK Receiver Software

In Section 2. we studied techniques for synthesizing digital cubsystems
- in general, and the phase-locked loop in particular. We applied these results
in Section 3. to the development of a completely digital PSK receiver. Various
solutions to the carrier and bit syﬁchronization problem are compared on the
basis of performance, speed, and complexity.

.3.1.1 Sampling and A/D Conversion of Data

The first step in digital receiver design is the specification of a
sampling technique. A brute force method would be to sample the noisy carrier
at a rate which is fast enough to reproduce the carrier frequency. Digital
logic and A/D converters, however, are not capable of operating at speeds
compatible with typical carrier frequencies. For this reason the utility of
the quadrature component signal sampling technique developed earlier in this
report is of special importance in digital receiver design for nérrowband
binary PSK signals. With this technique the RF carrier is first heterodynea
to a convenient IF frequency. There are two approaches to obtaining the
quadrature components from the IF,

Quadrature Sampling

In one approach the quadrature components of the PSK carrier are generated
by heterodyning the carrier with the best available estimate of the carrier and
with a 90° phase shifted version of the carrier. Both of these products are

then low pass filtered to eliminate the double-frequency terms (Figure 50a).
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The output of these filters are the quadrature components of the noisy PSK

signal. Note that it is only necessary to sample the quadrature components

at a rate consistent with the signal bandwidth. The technique is very

efficient since it reduces the bandwidth and sampling rate to levels consistent

with the information bandwidth and pié&:s the minimum possible demands on the

A/D converter time resolution.

IF Sampling

This section describes .the direct IF sampling approach (Figure 50b) and

the usage of the ADCOM IF Sampler with the MDAC digital receiver.

The direct IF sampling technique generates a pair of quadrature samples

by strobing a narrow aperture sampler at two instants of time separated by

one-quarter of a period of the nominal IF (Figure 51).

IF IN=—

ALIASING
BPF

REFERENCE
OSCILLATOR

2xIF

()

Denote the noisy PSK

CONVERSION
COMPLETE

v

Mux

Bt A/D

i COMPUTER

INTERFACE
() -
CONTROL LINE
0°
DATA
900 — READY
(P CHANNEL)
+2 =N
SAMPLING RATE
DIRECT IF SAMPLING AND A/D CONVERSION 10
: _ o Figure '51
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signal referred to the nominal IF frequency, s by Equation (102)
E(t) = A a(t) .m,[wot + e(:)] + n(t) (102)

n(t) = n,(t) cos [wot + 6(t)] + n,(t) sin [wot + e(ti] (103)

m(t) = modulation

In terms of its quadrature components, x(t) and y(t) defined in Equation (104)

and Equation (105), the noisy signal can be represented as Equation (106).

x(t) = [A n(t) + nz(t)] cos 8(t) = ny(£) sin 6(t) (104)
y(t) = [A m(t) + nz(t)] sin 6(t) + n (t) cos 6(t) (105)
E(t) = x(t) sin wot + y(t) cos wot (106)
The first quadrature sample taken at ti =N %ﬂ-is gshown in Equation (107).
o .
a; = E(ty) = y(t)) | (107),
The second quadrature sample taken at ty + 5%— is shown in Equation (108).
)
L T .
az—E(t’:i*'zT) = x(ti+-2—(-o-) (108)
a, = x(ti) (109)

Equation (109) follows because m(t), 6(t), nl(t), and nz(t) are slowly varying
compared to Wy Thus, a; and a, are the same quadrature samples that are

obtained from the quadrature sampling technique.

The ADCOM IF Sampler is operable at three IF frequeﬁcies, 10 MHz, 1 MHz,
and 1 KHz. For 1 KHz inputs the required 90° separation is achieved by operating
each sample and hold with a repetition period of 256 usec. The output of each
sample and hold corresponds to samples spaced by 90° (i.e., 0°, 90°, 180°,

6

270°, ...) of an IF reference at (4 x 256).1 x 107 = 0.97 KHz (Figure 52).

82

MCDONNELL. DOUGLAS ASTRONAUTICS COMPANY » BEAST



DIGITAL RECEIVER STUDY : ' MDC E0648
AND IMPLEMENT ATION 1 JUNE 1972

e SAMPLE INTERVAL i
SAMPLING

I
GATE | | - | |

S/H1 —] 256us |= | | | | | | | | |
smz | I | | | I I | | | |

250 ns-—-“--

0.97 kHz IF

SAMPLE TIMING FOR 1 kHz OPERATION
Figure 52

The digital processor can change the effective sampling rate by discard-
ing certain samples. For example, the first two samples from S/H 1 in Figure 52
are quadrature samples of 0.97 KHz IF. The digital processor fixes the interval

between input samples of the quadrature components at 2.048 msec by discarding

six samples from S/H 1 before accepting the ninth and tenth samples as the
next pair of quadrature component samples.

The standard test parameters for the MDAC digital receiver were chosen
to be a 244 Hz IF with a bit rate of 12.2 bits/second and a sample period of
E%Z-seconds (20 samples/bit). The ADCOM IF Sampler was adjusted so that the
S/H's operate with a 1.024 msec period. The digital computer accepts four
samples from the output of one sample and hold operating with a sample period
of 1.024 msec. The first two samples are the éuadrature components of the

.244 Hz input signal (Figure 53). The remaining two samples are discarded.
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UADRATURE
Qs ANPLE PAIR SAMPLES DISCARDED

SAH1

L————SAMPLE INTERVAL -——~]

244 Hz IF

SAMPLE TIMING FOR 244 Hz OPERATION

Figure 53
For this sampling technique, there is one carrier cycle between successive
quadrature sample pairs. Sampling with a noninteger number of carrier cycles
between quadrature sample pairs introduces an apparent frequency offset at
'ﬁg—d’ W, rad/sec where N+d is the total number of carrier cycles betwgen quadra-
;:ure sample pairs. N is an integer and d is less than unity. The input signal

to the digital receiver is then described by Equation (110) instead of Equation
(102) .

E(t) = A m(‘t) sin [wot + 8(t) + 'I% wot] + n(t) (110)

When operating the MDAC digital receiver with a noninteger number of
carrier cycles between sample pairs a frequency offset, —Nde- W, rad/sec

is used as an initial condition in the Costas loop.

3.1.2 Rejection of DC Bias

In experimental evaluations of the digital receiver , wé experienced
difficulties with a DC bias at the output of the quadrature component genera-
tion circuitry. This bias appears to the Costas loop to be an interferring

frequency component at the center frequency of the IF filter. If the bias is
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large enough, the Qostas loop will track the IF center frequency rather than
the input'signal frequency. We investigated both placing an analog high pass
filter in fhe quadrature component circuitry and placing a digital high pass
filter in the digital receiver. The most important trade-off between these
techniques is the extra computation time associated with the digital implementa-
tion as opposed to the requirement of an added analog filter.

We first incorporated a digital high pass filter into the digital receiver

as shown in Figure 54. Any DC bias in the quadrature components is eliminated

X+DC LPF _bc @ X

H(f)

QUADRATURE
COMPONENTS

Y+DC LPF DC_ fz\ Y

H(f)

_1
1 + jonfr

DC BIAS REMOVER . Figure 54

H(f) =
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by first'passing each quadrature component through a digital low pass filter
and then subtracting the low pass filter output from the quadrature component.
The Z transform implementation for a low pass filter whose transfer function

is H(f) as defined in Figure 54 1s given in Equation (1lll) yhere Ei(n) is the

ngl input sample, Eo(n) is the nEE filter output, and h is the sample period.

h h
T T _ (111)
Eo(n) = T Eo(n—l) + (1 -e .) Ei(n 1)
_h
for -% <<1l, e ' ¥1- %
E(n) =E (n-1) -2 E (n-1) + 2 E, (n-1) (112)
o o T o T i !

Equation (112) uses only two multiplications and two additions. One
subtraction is then needed to remove the DC bias from the quadrature component.
These operations do not add any significant computation time. We measured
Costas loop tracking performance and phase error variance with the DC bias
remover added and found no detrimental effect on receiver performance for
T = 200 bit periods. The digital high pass filter is easier to implement
than an analog high pass filter and does not significantly increase computation
time. For these reasons we chose the digital implementation.

3.1.3 Input Filter Design

Section 2.7.1 discussed the loss due to sampling or noise aliasing and
showed that it was desirable to make the ratio of sampling rate to input band-
width as large as possible. The input bandwidth is fixed by the bit rate and
frequency instability. If all the input samples are passed through the
entire digital receiver, the maximum sampling rate is determined by the maxi-
mum required computation time. However, one way to increase the effective

sampling rate is to sample at a high rate, filter a group of these samples to
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produce one smoothed sample, and then process this one sample with the entire
receiver. This is roughly equivalent to lowering the input filter bandwidth,
but it is accomplished purely by digital means. The sampling loss is reduced
due to the increase in the ratio of sampling rate to input bandwidth.

For instance, when operating at 244 Hz, the IF signal is sampled four
times each carrier cycle (Figure 53). Normally, the first two samples‘are
processed by the digital receiver and the remaining samples are discarded.

In this section we use all of the input samples to obtain signal quadrature

components.

Define the four samples in one sample interval as follows:

3 = y(ty) (113)
Tr ~

a, = x(tl+ 3;3) ~ x(tl) : (114}
T

a5 = y(t1+ w0 ) (1153

ag~ -y(t,) (116)
3w

34 = X(tl+ 300 » (117)

a4: - x(tl) (118)

Equations (116) and (118) follow because n(t), 6(t), nl(t), and nz(t)

are slowly varying compared R which has changed phase by 180°. One
quadrature sample for the digital receiver is computed by low pass

filtering a; and —a43 the other by filtering a, and —a,. We use the Z
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transform implementation for a low pass filter discussed earlier in this

report. The algorithm for filtering the input samples follows.

A(IDX)=1input samples h = step size = 2.048 sec.

Y =quadrature component sample T = low pass filter time constant
X =quadrature component sample CON = h/T

QB-"fl.O

Y = 0.0

X = 0.0.

DO 930 IDX = 1, 3, 2

QB=QB

Y =Y~-CON*Y+QB*CON*A (IDX)
930 X=X~-CON*X+QB*CON*A(IDX+1)

3.1.4 Generation of PSK Modulated Noisy Carrier

A data stream, for simulation purposes, was generated by a pseudo-random
generator with variable length sequences. The data (NRZ or split-phase) was

phase modulated on a carrier, and wideband noise with a known noise density

was added to the carrier. For quadrature component sampling, the noisy
carrier was then multiplied by an estimate of the carrier frequency and by

a 90° phase shifted version. Both products were then low-pass filtered to
eliminate the double-frequency terms (Figure 50a). The outputs of the low
pass filters are the quadrature components of the noisy PSK carrier. The
quadrature components and a third channel, which contains the data stream and
the hard-line bit-synchronization pulses, are then A/D converted. For direct
IF sampling, the noisy carrier was bandpass filtered and processed by

the ADCOM IF Sampler (Figure 50b). The outputs of the IF Sampler are the
quadrature samples of the noisy PSK carrier. The. quadrature samples and

a third channel, which contains the data stream and the hard-line bit

synchronization pulses, are then A/D converted. As in the unmodulated
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ca;rier generation in Section 2,7, PSK carrier data was also generated by
purely digital means to provide a check case for the bit error rates
determined from the analog generated dgta.

By using digitally generated data, effects due to electronic instabili-
ties in the A/D con&erter, noise generators, and the carrier oscillator
are eliminated. The effects of different truncation levels were modeled
in the CDC 6600 by internally reducing the number of bits/word to give a
specified truncation error before entering the tracking loop. Figure 55
is a block diagram of the digital data generation subroutine which was
used for generating the noisy PSK carrier.

3.1.5 Study of Carrier Synchronization

In order to demodulate PSK, it is necessary to estimate the phase and
frequency of the subcarrier with as little error as possible, If the
information process contains a residual component of sufficient‘strengfh
at the subcarrier frequency, this componeﬁt-may be considered as a carfier
and tracked as previously discussed. Several methods have been proposed
for generating a reference subcarrier from the received signal when the
residual subcarrier component is not available.

We will first consider the various analog carrier tracking techniques
and then derive their digital equivalents. The squaring loop and the Costas
loop which are common analog carrier tracking devices are shown in Figures

56 and 57. The analog Costas loop and squaring loop, although somewhat

different in structure, are mathematically equivalent assuming that the
effect of the presquaring bandpass filter is ignored. Neither method:
requires bit synchronization, but both are subject to 180 degree phase
ambiguities. Since the two techniques are ideally mathematically equivalent,
the digital Costas and squaring loép are identical. The digital Costas

loop is developed later in this section.
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A third technique which has received considerable attention in the
literature is the delayed decision feedback or the decision-~directed carrier
tracking. This method estimates the data bit and feeds this value back

to be multiplied by a delayed version of the carrier (Figure 58). For

DECISION-ORIENTED CARRIER TRACKING

BIT SYNC

:

E(t) LOW an DECISION
_——@" s [ l;’T‘ > oevice

veo s F(S)

90° OUTPUT

DELAY

| é LOW
PASS

this technique good bit-~synchronization is required for proper performance.

FIGURE 58

Unfortunately, most bit synchronizers also requiré good carrier synchron-
ization to work. Thus a circular problem results and careful attention

must be given to the interrelationship between bit and carrier tracking.
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The digital decision-directed carrier tracking loop is more complex than
fhe Costas loop in that a shift register must.be provided to.obtain a one
bit-period time delay. A decision-directed carrier tracking loop also
tracks with phase offset equal to wOT radians where R is thé IF frequency
and T is the bit period. This requires that the bit period and carrier
frequency be accurately known or that the modulaﬁiﬁn be synchfoniéed to
the carrier phase. Probability of error with our digital Costas loop and
Decision Feedback loop is shown in Figure 59. Note that.the slight
performance enhancement obtained by the di;;tal decision-directed carrier
tracking loop does not appear sufficient to outweigh the previously
discussed disadvantages. Also the digital Costas loop gives tracking
performance which is comparable to the other techniques, but yet is -
considerably simpler to instrument. Using the Costas loop also separates
the bit and carrier synchronization algorithms which simplifies acquisition.

Thus, the Costas loop appears to be the best analog technique for digital

implementation.

Synthesis of Carrier Synchronization Algorithm

The differential equations describing the operation of the Costas loop
in terms of the quadrature component samples are derived in this section,
The set of digital algorithms for carrier synchronization consists of a
numerical solution of these equations.

The input to the Costas loop, E(t) = x(t)sin wot + ygt)cos mot, was
defined in Section 3.1.1 in terms of the quadrature components. The
lowpass filters in the Costas loop are assumed to have the following

‘effects at points (1) and (2) in Figure 57;

93

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



DIGITAL RECEIVER STUDY ' MDC EO648
AND IMPLEMENTATION 1 JUNE 1972

BIT ERROR PROBABILITY FOR COSTAS LOOP AND DECISION FEEDBACK
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(1) The low frequency components of the signal and noise are passed
‘without distortion;
(2) .All double frequency components are completely rejected.
Let the output of the VCO be cos(wot + 6(t)) where wo/2n is the free
running frequency of the VCO in Hz, 6(t) is the Costas loop estimate of the
unknown phase 6(t). Using these assumptions the voltagés at 1 and 2 can

be expressed in terms of the quadrature components as

Vl(t) = - % x sin 6(t) +-% y cos 6(t) (119)
: 1 - 1 .7
Vz(t) =75 X cos 8(t) +'E y sin 6(t) (120)
and the voltage e(t) is
e(t) = % (y2 - x2) sin 28(t) + xy aos 26(t) (121)
The differential equation describing the loop is
4132 —= = KF(p)e(t) (122)
where

P --%E is the differential operator,

K = multiplying constant for the VCO, and

F(p) = transfer function for the loop filter.

Because the Costas loop must extract a referepce in the presence of
frequency detuning, the loop filter F(s) is chosen for a second-order

active loop.

(123)

The Costas loop characteristics are defined in terms of the damping factor z,
the undamped natural frequency wos and the noise equivalent bandwidth BN

of the linearized loop. These parameters can be defined in terms of various

loop and signal constants.
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A block diégram of the linearized Costas loop is given in Figure 60,

where the inpﬁt to the Costas loop is assumed to be signal only.

LINEARIZED COSTAS LOOP

0 + s+a AZK 6

— by e

- - H 4 [

FIGURE 60

The loop transfer function can be determined as shown in Equation (124).
2 2

- AK A°Ka
6 (s) . 4 °*73 | (124)
6 (s) s24 AK | AKa

4 4

The transfer function can be written in the standard second order form.

6 (s) 28uw.s + w2

) ' (125)
& (™) sz + Zz;w“s + mnz

where K = 85w - (126)
A
= %n
and a 2z (127)
V2

The damping factor ¢ is usually defined as 2 in Costas loops and that value
will be used in the digital Costas loop. The undamped natural frequency

W, is defined in terms of the damping factor and the loop noise bandwidth B

N.
w = 3%Bn (128)
n 42;2+l
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The loop noise bandwidth B_ is defined from linear phase-locked loop theory

N

as
=1 . 8(f) ‘ " (129
By =3 -7/ s 9 : (129)

: where-giil is defined by Equation (124) with's = j2nf.

If the constant amplitude factor A and the loop noise bandwidth BN
| are known, the Costas loop gain K and loop filter constant a can be
determined. It is convenient to describe the Costas loop in terms of its
linear paraﬁeters even when it is operating in the nonlinear range. The

Costas loop can be coﬁpletely described in the time domain by substituting

Equations (J21) and (123) into (122)

20 - .
Q_%L_l = Ka %-(yz—xz)sin 20(t) + %-xy cos 26(t)
dt
+ K'%t [ % (yz—xz)sinZG(t) + % Xy cos 26(t)] (130)

The real time solution of Equation (130), where x and y are the signal quadrature.
components, is the real time estimate of the carrier phase which is mathe-

matically equivalent to that of an ideal Costas loop.

To obtain the real time solution for 6(t), Equation (130) can be represented
by two first order simultaneous differential equations. Let X1 = 8 and X2 be

a dummy variable, Equations (131) and (132) are equivalent to Equation (130).

d _ 1,2 2 . 1
rrs X1 =X2+K [8 (y"=-x7) sin 2X1 + 7 Xy cos 2x11 (131)
-%t X2 = Ka [% (yz—xz) sin 2X1 +‘% Xy cos 2X1] (132)

The real time numerical solution of Equations (131) and (132) is the digital

equivalent of the analog Costas loop.
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A §ery simple numerical integration routine must be used to solve Equations
(131) and (132) because all signal processing in the digital receiver is done in
real time. Consequently, very complex integration routines that involve higher
order derivatives like Taylor's algorithm 1 are not applicable. The Runge-Kutta
method of order 1 is often used in the numerical integration of differential
equations. This method requires four derivative evaluations per step. For real
time calculations the computation time necessary for four derivative evaluations
makes the Runge-Kutta method impractical. To satisfy the requirement for the
least number of computations per step, Euler's method 1 was chosen, This
method requires a small step size or high sampling rate, but uses'only one
derivative evaluation per step. In general, Euler's method for the solution

of the differential equation

b' = £ (a,b) (133)

s b=b _; +hf (a ;b)) . (134)

where h is the step size.
The solution of the Costas loop equation by Euler's method where H is

the sample interval is given in Equations (135) and (136),

1,42 2 1 -
X1 = X1 + = - =
, -1 ¥ H X2 + RGO, - X )stn 2x1_ + 3 %-1¥p-1 €08 2X1__11(135)

X2, =X ) +H Kalgye | X2 Datmox 43

n n-1 8 1 %7 X-1 Ypq C08 2X1

n-1 (136)
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Eqﬁations (137) and (138) are difference equations for the Costas loop phase
estimate and can be solved in real time on a digitel computer. The computer
algorithm for the Costas loop follows:

. H = Sample Interval
DK = H*K
CK = H#*K*ga
X1 IS COSTAS PHASE ESTIMATE
X2 IS A DUMMY VARIABLE
ADC(1) AND ADC(2) ARE THE DIGITIZED QUADRATURE COMPONENTS

X = ADC(1)

Y = ADC(2)

TEMP = (Y#*2 ~ X%*2) *SIN(2*X1)/8.
+X*Y*CO0S(2.*X1) /4.

X1 + H*X2 + TEMP*DK

X2 + TEMP*CK

X1
X2

The real time phase estimate from the digital Costas loop is used to
establish a coherent reference for the cross-correlation or matched filtered
detection process. The receiver cross-correlation operation is performed
by a multiplier-integrator combination that multiplies the signal with the
coherent reference and integrates over a bit period. The correlétor output

C is given by Equation (137).
(n+1)T A
cC= J E(t) sin (w t+6(t)) dt (137)
nT
where T is a bit period. Since the integration in the correlator averages

out the double frequency terms, Equation (137) can be expressed in terms of

the quadrature components as Equation (138).
(n+1)T o A
c= S 2 (x cos6(t) + y sin6(t)) dt (138)
nT
The digital correlator output is computed by performing the integration

using the quadrature components and the phase estimate from the digital

Costas loop. A bit decision is made by determining sgn[C]. The timing
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command to make a decision on the correlator must be supplied from the bit
synchronization algorithm. The digital algorithm for the correlator,

performed using Euler's method is Equation (139).

- 1
Cn = Cn-l + H [2 (Xn_lcos X1n~1 + Yn-l sin Xln—l)] (139)

3.1.6 Automatic Gain Control

Earlier in this report we discussed two AGC techniques for use with
a phase-locked loop. In the first approach we placed a bandpass limiter
at the input of the phase-locked loop. In the second method we utilized a
closed loop AGC preceeding the phase-locked loop. We chose the bandpass
limiter as the preferred method for use with a phasé-locked loop because of
its simplicity and the small computation time required. In addition, this
technique will correct amplitude variations instantaneously. 1In this
section we will apply the limiter to our digital receiver to provide AGC
for the Costas loop. |

We incorporated the bandpass limiter into the Costas loop as we did
in the phase-locked loop in Section 2.5.1. With a bandpass limiter the

voltage e(t) (Figure 57) is Equation (140).

2 ~ ~ -
e(t) = il%"— sin 26(t) + = XL o8 26(t) (140)
824 42 b2y 2

The Costas loop equation with a bandpass limiter is Equation (141).

27 2 2 . .
e Rafg X sin 20(c) + -};—2—’51——2- cos 26(t)] (141)
X +vy X +y
4 12 o 2 . 1 , .
g, [5 45— sin 20(t) + + —F— cos 20(t)]
t '8 2 2 42, 2
X +vy X +y
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To obtain the real time solution for 6(t), Equation (141) can be reprééented by
two first order differential equations. Let X1 = 6 and X2 be a dummy variable,

Equations, (142) and (143) are equivalent to Equation (141).

2 2
%t'Xl = X2 + K[%.Z__:;Ei_ sin 2x1 + %'xy cos 2X1] A .. (142)
2. 2
X +vy
4 %2 =xa 53-23—1—53 sin 2%l + = xy cos 2X1] (143)
dt 8 2 . 2 4 A

x +vy .

The real time numerical solution of Equations (142) and (143) is-the.digital

equivalent of the analog Costas loop with a bandpass limiter. The numerical

solution of Equations (142) and (143) using Euler's method where H is the step

size, is given in Equations (144) and (145)

2
1 Yn-1 7 %1 1 *n-1"n-1
= — + —_— ]
XZn Xln—l + H [in_l + K[8 5 > sin 2X1 1t 5 cos 2X1n_l](14q
X +vy X +y :
2 2 n-1 n-1 n-1 n-1
- x X y
1 7n-1 7 *n-1 1 ¥p-1 Yn-1
- = —_—— gi 4+ = ———————— cos 2X1
R, =Xt 7 sin2Xl , +4 2 a1 (145
X +y xn-1 + y
n-1 n-1 n-1

The computer élgorithm for the Costas loop with a bandpass limiter follows.

H = Sample Interval

DK = H*K

CK = H*K#*a

X1 IS COSTAS PHASE ESTIMATE

X2 IS A DUMMY VARIABLE

ADC(1) AND ADC(2) ARE THE DIGITIZED QUADRATURE COMPONENTS

X = ADC(1)

Y = ADC(2)

TEMP = (Y*%2 - X*%2) *SIN (2.*X1)/(X**2 + Y**2)/8,
+ X*¥Y*COS (2.%X1 /(X**2 +Y**2) /4,

X1 + H**2 + TEMP*DK

X2 + TEMP*CK

X1
X2

A graph showing the output phase variance as a function of the input
noise spectral density fqr the Costas loop with, and without, a limiter is

shown in Figure 61. This ¢urve shows that the phase variapnce is
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néarly identical for both cases. Addition of the bandpass limiter does not
degrade Costas loop operation, and allows the bandwidth of the Costas loop
to be set independently of the input signal amplitude.

3.1.7 Study of Bit Synchronization

One of the objectives .of this study is to determine an "optimum" bit
synchronizer for use with the MDAC digitél receiver. This bit synchronizer
must also be "easily‘realizable" on a &igital computer and must adapt to
relatively large bit rate variations.

To develop an "optimum" bit synchronizer, a model of the input data
stream and a criterion of optimality is required. The model of the input data
stream must specify the symbol wavefofms, the symbol occurrence statistics and
the statistics of the timing jitter. Previously, using nonlinear filter theory,

e ‘11, 12, 13, synthesized a bit synchronizer and detector which was optimum in

the sense of minimum bit error probability for the case of a constant known
bit rate, but an unknown phase. Other authors 14, 15, 16, have considered slight-
ly less general situations using Bayesian or maximum likelihood estimation and
have obtained somewhat similar results. Although none of these authors direct-
ly consider the case of varying or unknown bit rate, this case can also be
treated by a conceptually straightforward generalization of the pfevious
results. |

The second constraint on our bit synchronizer is that it be "easily
realizable" on the digital computer. In a certain sense, any system which can be
mathematically defined can be implemented essentially exactly using a digital
computer and at least approximately using analog hardware. The optimum bit

synchronizer defined in reference 1l is certainly physically realizable in the

classical mathematical sense in that it does not require operations on data
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from fufure time., However, from a practical hardware implementation viewpoint
it 1s not realizable for normal bit rates. Even assuming a known bit rate of
1/T bits/seconds, the implementation of the optimum bit synchronizer would

require a bank of 4M correlators (i.e., matched filters) to achieve a minimum
timing error of T/M seconds. If the bit rate is aléo unknown, the number of
correlators required is increased by another factor which is related to the
uncertainty in bit rate.

A normal analog bit synchronizer at high signal-to-noise ratios will
operate with a timing error of less than 5% which would require that M be
greater than 20 to get equivalent performance. Thus with no uncertainty in
bit rate, at least 80 correlators are required for the bit sync alone.

Section 4 discusses this approach in detail and presents experimental perfor-
mance data.

Suppose we now attempt to synthesize the "optimum realizable' bit synchron-
izer directly. What really do we mean by "realizable"? We propose that by
"realizable", we really mean practically implementable at reasonable bit rates.
Since this definition of "realizable' 1s not a mathematically precise defini-
tion, the "optimum realizable" solution cannot be determined directly from a
mathematical argument. However, there is an analytical approach which leads

to physically meaningful results and this approach will now be outlined.

If we look at the various bit synchronizers that have been implemented, we
find that they all resemble phase-locked loops in the sense that they all make
an estimate of the phase difference or error between the incoming bit stream
and some intgrnally generated Eeference, filter this error estimate, and then
update the internal reference based on the filtered error value. In fact, the

optimum bit synchronizers discussed earlier can also be thought of in this way
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if the idea of a phase detector and filter are each generalized somewhat.
Therefore,‘we have investigated two approaches ﬁo bit synchronization which
utilize a phase detector and loop filter combination. The first type utilizes
. a nonlinearity to generate a frequency component at the bit rate and tracks
this component with a phase-locked loop. The second approach utilizes an early
and late gate to generate an error signal which is used in a feedback loop to
center the gates on the transition. In the following sections we will discuss
two implementations of each type of bit synchronizer and compare them by
determining timing jitter as a function of signal-to-noise ratio and mean
acquisition time as a function of frequency offset.

Nonlinear Bit Synchronization

We will investigate two types of bit synchronizers which fall into this
category. The first technique, which was considered by Wintz and Luecke 14,
consists of filtering, squaring, and bandpass filtering the bit stream and
utilizing positive zero crossing of the resultant signal. In general for the
case where the bit rate is unknown, the bandpass filter would be replaced by

a phase-locked loop as shown in Figure 62.

BIT Low SQUARE PHASE STABLE
STREAM = PASS 1 LAW — LOCKED cLOCK
FILTER DETECTOR LooP
SQUARE LAW BIT SYNCHRONIZER
- Figure - §2
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The input low pass filter is used to obtain a maximum signal-to-noise
ratio at the input to the square law detector. The square law detector
genefates a fréquency component at the bit rate which is tracked by the phase~-
locked loop.
In order to analyze this technique we must first determine the amplitude
of the harmonic generated at the bit rate. This amplitude can be determined
by computing a Fourier series of the square law detector output. TFor the
specified square pulse shape with either NRZ or Manchester coded input data,
the amplitude of this component 18 zero. However, this does not negate the
use of this approach, since if the input signal is first differentiated and
then squared, a frequency component at the bit rate will be generated. The

performance of this approach is then determined by computing the amplitude of

the fundamental component using Fourier analysis. The ratio between the power
at the bit rate and the total power in the bit train is a measure of power
penalty with this approach. This technique also has the disadvantage that the
amplitude of the frgquency component at the bit rate is a function of the input
bit sequence. A string of ones or zeros will reduce this amplitude to zero
for short intervals of time. This effect reduces the tracking capability of
the loop and increases the output phase variance. To illustrate the operation
of this technique, we assume for the moment that a one is represented by a
positive half sinusoid and a zero by a negative half sinusoid. If we assume
that the low pass filter does not alter the shape of the input pulse, the out-

put of the square law detector is

V(t) = Az'sin2 wt = %’Az(l - cos 2 wt) (146)
A = peak bit amplitude
T = Bit period

106

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



DiGITAL RECEIVER STUDY : MDC E0648
AND IMPLEMENT ATION ' 1 JUNE 1972
The phase-locked loop following the square law detector tracks the frequency
component at the bit rate (2%) (amplitude A2/2) to obtain the bit timing refer- °*
ence, |
The second approach we investigated generates a frequency component at
the bit rate by multiplying the input sigﬁal by itself delayed by one half of

the bit period. A block diagram of this method is given in Figure 63, In con-

PHASE
BIT STABLE
STREAM —> tggg“ " CLOCK
TIME DELAY

(T/2)

‘DELAY»AND MULTIPLY BIT SYNCHRONIZER Figure 63

trast to the previous technique, this approach will generate a harmonic at the
bit rate for square input pulses with either the NRZ or Manchester format. If
the input bits have amplitude A and ones and zeros are equiprobable, it can be

shown that the average autocorrelation function has the form shown in Figure 64.
R(v)

3a4

AUTOCORRELATION FUNCTION FOR OUTPUT OF DELAY AND
MULTIPLY BIT SYNCHRONIZER —
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The average time waveform associated with the periodic component of this auto-

correlation function is

2
1 2n7t
v(t) = ——2: 2 st (2215 (147)
n=1,3,5,...

The phase-locked loop following the multiplier will track the frequency com-
ponent at the bit rate to obtain the clock signal. For NRZ data the amplitude
of this component is time varying because it depends on the bit sequence. For
extremely low loop bandwidths this effect will be negligible since the vari-
ance in amplitude will be averaged. As with the square law implementation,
for wider loop bandwidths the tracking effectiveness of the loop will be de-

creased and the output phase variance will be increased.

Gated Bit Synchronization

The final type of bit synchronizer which we investigated in this section
is a gated phase-locked loop. This technique uses two overlapped gates around
the transition as shown in Figure 65.

The first gated technique that we considered was developed by Layland 17
and is shown in Figure 66. In this technique the signal in the early and late
gates is integrated, squared, and subtracted to determine the error signal,
which is then filtered and used to drive the VCO.

We also investigated a second gated approach, which was suggested by
Simon 18, that determines the error signal by subtracting the absolute values
of the early and late gates outputs. Both of these approaches can bé used
with either NRZ or Manchester coded input data. Since the gate width must be
reduced to one half of the bit period for the latter type data, the possibility
of locking-up on the wrong transition exists, and the linear region of the

error curve will be reduced.
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Comparison of Techniques

We firstldetermined the rms bit jitter as a function of the signal-to-
noise ratio fof the square law and absolute value gated bit synchronizers and
the delay and multiply nonlinear synchronizer. The square law nonlinear imple-
mentation was omitted because its operation is essentially the same as the
delay and multiply approach. The resulting data, which is shown in Figure 67,
was obtained using 20 samples per bit and an equivalent loop time constant of
10 bit periods. This data shows that there is very little difference between
any of the three approaches. The absolute value method has lower rms tracking
error over the total range of signal-to-noise ratios. For high signal-to-
noise ratios the delay and multiply method ranks second, while at the low
signal-to-noise ratios the square law implementation is second best.

We next determined the acquisition time as a function of the percent un-
certainty in bit rate. The main proﬁlem in obtaining this data is defining
when acquisition has occurred. In our digital simulation, we utilized 80

samples per bit and defined acquisition as having occurred when the absolute

error remained less than 2 samples Cﬁ% of the bit period) for a total of 10
bits (i.e., one loop time constant). We then designed each of the bit
synchronization loops to operate with a nominal bit period of 80 samples and

a time constant of 10 bit periods. Figure 68 shows a graph of the pull-in
time in bit periods as a function of the bit period increase in percent.

These results were obtained using a noise free random bit sequence of equally
probable ones and zeros. This data indicates that the square law gated imple—
mentation gives the best acquisition time. The other two approaches are

approximately equivalent.
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In determining the best approach to use for the MDAC Digital PSK receiver,
we rated pull-in time as an important performance criterion., The rms bit jitter
for each of the techniques can be equalized by increasing the signal-to-noise
ratio, but the acquisition times which were shown in.Figure 68 were taken for
the noise free case and thus cannot be further improved. With this in mind,
we selected the square law gated implementation since it gives the optimum
pull-in time and is only slightly worse than the absolute value implementa~-
tion with respect to bit jitter.

Synthesis of Bit Synchronization Algorithm

In this section we derive the algorithms for the bit synchronization
loop. We first derive an algorithm for NRZ data, and then, using a similar
approach, derive an algorithm for split-phase data.

Synthesis of Bit Synchronization Algorithlm - NRZ Data

A functional diagram of the MDAC Digital PSK bit snychronization loop,

as modeled after the telemetry bit synchronization loop developed by JPL 17 s

is shown in Figure 69. The bit synchronization loop operates by sampling the
early and late integrals of the input NRZ data stream; squaring the two inte-
gralsg differencing and filtering the two squared values to obtain a phase-
error correction; and then generating the early gate, late gate, and bit

timing commands.

The early integral is the integration of the input data stream from one
quarter of a bit period before the local estimate of the data transition time,
;i’ to three quarters of a bit period after the estimated data transition
time. The late integral is the integration of the data stream from three

quarters of a bit period before the estimated data transition time to one

quarter of a bit period after the estimated data transition time. The sign
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of the two integrals is removed by squaring so that the bit sync loop error

signal is independent of the polarity of the data transitions. E,, the loop

i
phase error signal, is generated by differencing the squares of the two
integrals. The value of this difference will be zero (for the noise free
case) when no data transitions have occurred during the early and late inte-
grals, or when a data transition occurred at the same time as the local
estimate of the transition time. When the difference of the two squares

is not zero, there is a phaée error in the local estimate of the transition

time. The sign of the difference indicates the direction to shift the phase

of the local estimate of the transition time to correct the phase error.
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The magnitude of the difference is proportional to the amount of phase shift
necessary to correct the phase error.

For example consider the case where the 1oéa1 estimate of ?i is off by
one quarter of a bit period. Let ti denote the actual transitioh time and

~

T denote the bit period. Then ti +

1=

= ti. Define v(t) = +1 for t 5-ti and

v(t) = -1 for t » ts. Thus the late integral is +T and the early integral

is zero. The error signal, E is then +T2. If v(t) = -1 for t j_ti and

i’

v(t) = 1 for t > t , the same error signal is obtained; thus the error signal

i

'is data independent. Now let the local estimate of ti be off by one quarter
of a bit period in the opposite direction so that Ei - % = ti' Let

v(t) = +1 for t j_ti and v(t) = -1 for t > ti' The late integral is now
zero and the early integral is -T resu%ting in Ei = —Tz. Changing the sign
on the transition as before does not change the error signal. When Ei = ti
the difference of squares error signal is zero regardless of the sigh'of the
transition. Similarly the error signal is zero if v(t) has no transition
between Ei - 3/4 and Ei + 3/4.

The error signal, Ei’ computed in this manner is linear for.Ei - 1/4
=ty f_gi + 1/4 as shown in Figure 70. Outside this region the sign of the
error signal corresponds to the direction to shift the estimate of the
transition time to correct fhe phase error in a minimum number of steps.

Had the integration windows been chosen so that the early énd late inteérals

were computed over an interval of less than one bit period each, the error

signal would have a smaller linear range.

For computer implementation the phése erro; signal, Ei’ is scaled to an
equivalent number of discrete phase steps. This number is added to the
number of samples in the basic bit period which must be applied apriori to
the computer program. The phase shifter accepts this output consisting of
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Figure 70

LOOP ERROR SIGNAL
the number of samples in the basic bit period combined with the number of
samples of phase correction necessary to synchronize the local data clock
with the actual data. This value is counted down to zero and the phase
shifter i1s again ready to accept new timing information. When no phase
correction 1s indicated the phase shifter merely counts down the number of
samples in the basic bit period and outputs the timing commands for the
early gate, late gate, and data integrals. We considered two different
procedures when a phase correction is necessary. In the first case we
reduce computation time by not storing any samples of the input signal.
To operate without storing input samples, a computation of the error signal
must be omitted each time the gates are moved while new samples are read
into the gates. The phase shifter outputs oniy the data timing commands,
and no error signal is computed during that data interval. This approach
may degrade tracking an unknown bit rate since‘for a large bit rate offset
the gate center is constantly being sleﬁed. If the offset is large enough,
the gate cénter is moved on each sample. With 'this implementation the gate
can only move on every other sample since an error calculation is skiﬁped

after a move occurs.
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In the second approach, this problem is eliminated by a more complex
teéhnique in which input samples are stored and an error signal is computed

on each bit. All the input samples are stored from the bit period prior

to an error signal calculation. When a phase correction is necessary, the

A

phase shifter uses the stored samples and the new value of ti to update the
gate values. The phase shifter outputs the data timing commands and g;té
timing commands for the next error signal. We developed compufer algorithms
for both approaches and have compared their performance in this section. We
will firgt develop the algorithm which does not store samples. The relative

positions of timing marks for the early, late, and data integrations are

shown in Figure 71 for perfect synchronization.

t b, b, tl. t. b
DATA,I l-:-l I-IZ |-:-3 HL-4 -04:5 ‘
LATE | R ’ N . A N j N ' N )
v v v L g v 8 v \
A B C D E, F.GH 1 J KoL
TIME POINTS DEFINING EARLY, LATE,
) Figure 71

AND DATA INTEGRALS
Some simplification in computer implementation may be obtained from
Figure 71. The late integral in the vicinity of ti + 1 is the sum of the
integrals A and B. The early integral is B + C. The error signals at ti +1

and ty + 2 are given by Equations (148) and (149) respectively.

(A + B)2 - (B + c)2 ' (148)

=1
[}

i+1

E =@+~ 0+ 8?2 .
\ i+ 2 (149)
Figure 71 shows that the early and late integrals overlap by one half of a bit

period.

In order to reduce computations the overlapping integration can be
removed by generating bit timing commands so that there are three integration

windows each one half bit period long as shown in Figure 72.
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The early and late integrals are then determined by Equations (150) and

(151) where the overlapping integrations have been removed.

~ A ~

Y+ 3/4 ty o+ 1/4 Y+ 3/4 .
. S v(t) dt = | v(t) dt + . [ v(t) dt (150)
1-1/4 t:_1 - 1/4 Ei+ 1/4

118

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY » EAST



: MDC E0648
DIGITAL RECEIVER STUDY : 1 JUNE 1972

AND IMPLEMENTATION

A ~ ~

Y v 1/4 Yy — 174 Y +1/4
~ f v(t) dt = . f v(t) dt + . f v(t) dt (151)
t1 7 374 ti% 374 b 174

Let Ai’ Bi’ and Ci be defined by Equations (151), (152), and (153).

Y - 1/4
Ay = / v(t) dt (152)

~

L1 374

~

b+ 1/4

i N
t

v(t) dt ' (153)

o~}
[}

i-1/4

Y +.3/4
i f v(t) dt (154)

Y+ 1/4

(@]
[}

The A integral on the i + 1 data bit is identical to the C integral on
the ith data bit. Therefore additional computation time may be saved by up-

dating the A integral as shown -in Equation (155).

(155)

The video input, v(t), for the bit synchronization loop is generated from

quadrature components, x and ¥, and the Costas loop phase output,

v(t) = x cos 6 + y sin 6 ' (156)

Using this expression for v(t) the Ai’ Bi’ and Ci integrals may be evalu-

ated by rectangular integration. The Ai’ Bi and Cl integrals can be defined in

terms of notation previously employed.
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A=A _+
- n-1 H [xn_1 cos Xln—l + Vo1 C€OS Xln_l]
B =38 + .
0 -1 H_[xn_l cos Xln_l + V-1 cos Xln_l] (157)
Cn = Cn—l + H [xn_l cos Xln_1 + V-1 €08 Xln-1]

It is required that the bit synchronization loop be able to acquire and

track a ramp input. Thus, the bit synchronization loop must use a second order

filter. Choose the loop filter of Figure 72 as F(s) = sta_, +-§

Then the feedback loop of Figure 72 can be represented as shown in Figure 73.

where the gain G is chosen to scale the error signal to an integer number of

-

discrete phase steps. G is then 2—5
4T

where SR is the number of samples per bit.

LOOP FILTER - Vco

ERROR G
DETECTOR

L

BIT SYNCHRONIZATION FEEDBACK LOOP Figure 73

The loop transfer function of Figure 73 is given by Equatioﬁ (158).

Gk(s + a) (158)
s + Gks + GKA

H(s) =

Equation (158) is in the standard second order form given in Equation (159)

2

H(s) =
(159)

s + 2zw + s2
> os

The loop time constant, TCON, is approximately o
: o
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Equation (160) follows from Equation (158) and (159).

k = 2Cwo
¢
(160)
w
a= ©o0
Gk

Since Ei is zero one half the time due to no transitions in the data stream,

the integrator gain k is doubled to compensate for the loss of error signal.

Thus,

4§m
k = 2 (161)

G

The digital bit synchronization algorithm can be derived as follows. Let

Ei be the input to the loop filter. Since the g-term in the loop filter and

the-g term in the VCO represent integrations in the time domain, the algorithm -
for the bit synchronization loop, using rectangular integration, can be shown
to be given by Equation (162).

E = ERR + EI*T

ERR = E (162)
ERRR = k*a*E + K*EI
THAT = THAT + ERRR *T

where EI = Ei’ k and a are defined as before, T is the bit period, and THAT
is the final filtered output.

The input.for the phase shifter is formed by first converting THAT to
the nearest whole number of samples NTHAT, and computing the difference

IR = NTHATn - NTHATn This integer number is the estimated number of

_1'
samples of phase shift required to align the transition times. It is the
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change in NTHAT from the n-1 error signal té the nth error signal that
represents the phase correction, because the phase shifter uses its present
estimate of the transition time as a reference and can move only in integer
steps away from this position to correct its estimate of the transition time.
The phase shifter adds or subtracts this difference, IR, to the number of
samples in the basic bit period and counts down this number to correct the
local estimate of the transition time. Therefore, if there is a ramp input
caused by incorrect knowledge of the bit period, the phase shifter tracks
the ramp by changing the basic bit period by IR samples.

To generate the timing commands, the phase shifter relies on a knowledge
of the number of samples per bit and the integration intervals for the

Ai’ Bi’ and C integrals. Reference to Equations (152), (153), and (154)

i

and Figure 71 shows that the integration window for the early and late
integrals is 1.5 bit periods long. Each integral, Ai’ Bi’ and Ci’ is

over half of a bit period and thus contains .5 SR samples. The phase shifter

A

has a counter, I, that begins at t, ~3/4, counts 1.5 SR samples, and then

i
is reset to zero. The Ad_integral is computed from t, ~-3/4 to ti - 1/4

~

over the first .5 SR samples; the Bi integral is computed from ti - 1/4 to t,

~

+ 1/4 while C, is computed from t, + 1/4 to t, + 3/4 over the last .5 SR samples

i i i

Ei is then computed, filtered, and a decision is made on IR to correct

the phase. If IR =0, A,

i+ 1 is set equal to Ci and the counter I is advanced

so that B,

i+1 and C,

i 4+ 1 are computed. If it is necessary to correct the

local estimate of the transition time, then a slightly different procedure

is followed. E, is computed at t

1 1 + 3/4 following calculation of Ci as

shown in Figure 71. The phase shifter corrects by increasing or decreasing

the number of samples between ti + 3/4 and ti + 1. No error signal Ei +1
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is calculated because it would have been necessary to save and order the
samples received while the phase correction was being made to obtain the
correct Ai +1 and Bi +1 integrals. Therefore the phase shifter waits until
the Ai +2 integral is to be computed and again begins outputting timing
commands.
The phase shifter has a second counter IDUM that generates the timing
command for the correlator integral by counting the number of samples in the

basic bit period starting at t When SR samples are counted the bit decision

it
is made and the correlator integrator reset. When a phase correction is
necessary IDUM is advanced or retarded so that the correlation integrates over
less than or more than a bit period as indicated by the error signal. In

this manner the bit synchronization loop is able to adjust the timing

commands of the data, early, and late integrals to correct the phase estimate
of the local clock without storing input samples.

The sample storage approach for bit synchronization is identical to the
approach just described except the action taken when a phase correction is
necessary. In the second approach all the input samples ffom the bit period
prior to an error signal calculation (from ty -1/4 to t, +3/4) are stored
?nd ordered in the computer. After the error signfl, Ei’ is pomputed at

ti + 3/4, the phase shifter uses the new value of ti to update the gate

integrals for calculating E Depending on the sign and the magnitude

i+ 1
of Ei’ all or portions of Ai +1 and Bi +1 integrals are calculated from
the stored samples. The counter, I, is advanced so that the next input
sample goes to the proper gate A or B. The correlator timing signal IDUM is

set to the proper value from the new value of ti, and a bit decision is made

as indicated by the corrected value of IDUM. IDUM is advanced or retarded
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so that the correlator integrates over less than or more than a bit period

as indicated by the error signal.

In this manner the bit synchronization loop is able to adjust the timing
commands of the data, early, and late integrals to correct the phase estimate
of the local clock. By using the stored input samples, the bit synchronizer
updates the gate integrals after an error signal calculation, and, thus,
an error signal is calculated on every bit.

A curve of bit error rate for the digital receiver with both bit synchro-
nization techniques is shown in Figure 74. The bit error rate is slightly
lower when using the bit synchronizer with sample storage. A curve of
standard deviation of bit jitter is shown in Figure 75. Bit jitter is also
lower when using the sample storage bit synchronization algorithm. We investi-
gated tracking performance of the bit synchronization loops for cases having
a large uncertainty in bit rate. We found that without sample storage, the bit
synchronization loop time constant must be 5 bit periods or less for the loop
to track a 5% uncertainty in bit rate. The bit synchronization loop with
sample storage will track the 5% uncertainty in bit rate with a loop time
constant of 10 bit periods or less, and will track a 10% uncertainty in bit
rate with a loop time constant of 8 bit periods or less. Without sample storage,
the bit synchronization loop will not track a 10% uncertainty in bit rate
because of the one and a half bit delay after each correction of the bit timiﬁg
reference before a new error signal can be computed. Sample storage allows
the digital receiver to operate over a larger uncertainty in bit rate than

was possible previously and significantly reduces bit tracking error

(Figure 76).
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Synthesis of Bit Synchronization Algorithm Split-Phase Data

We modified our (NRZ) sample storage bit synchronization algorithm to
operate with sblit—phase data by adding an "M-out-of-N" detector to determine
correct phase. Split-phase data has a transition in the middle of each bit.
The bit synchronizer must center the bit timing on this transition and not on
a transition which may or may not occur at the end of the bit.

For split—phase data, we operate our bit synchrconizer at twice the split-
phase bit rate. Each half of the information bit is detected, and thus an
error signal, Ei, is generated on each half bit. The phase shifter

" generates timing commands in exactly the same manner as for NRZ data for
the early, late, and data integrals on each one half data bit. The phase
shifter also.controls a correlator integral over the entire information bit;
and if necessary, corrects timing for this integral after each error signal
is computed.

To center the bit timing correctly a counter is used to determine the
number of mid-bit transitions in N bit periods. If this number is above the
threshold setting after N bit periods, correct bit timing is assumed. When
the number of transition is less than the threshold setting, the phase shifter
changes its estimate of the mid-bit transition by 180° and initializes all
counters,

With an "M-out-of-N" detector the probability of false acquisition and

the probability of acquisition are defined in Equations (163) and (164).

P{ M or greater transitions out of Nlincorrect phase}

N .
N N
> (K)(-5> (163)

K=

P{false acquisition}
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P{M Or greater transitions out of N | correct phase}

P {acquisition}

Non

> ( )(1—Pe)K PeN—K (164)
K

R=M

where Pe is the error probability for the one half bit detections made for the
"M-out-of-N" detector. For any value of P,» @ value of M and N can be calculat-
ed to insure a high probability of acquisition and a low probability of false
acquisition. Note that these results éssume that bit errors occur independently.

We first simulated the performance of the digital receiver with split-
phase data using a "l1l-out-of-14" detector and compared the results to the
performance of the digital receiver with NRZ data (Figure 77 and Figure 78).

For Pe = .1, this threshold setting resulted in P {acquisitioﬁ} =0.9559 and

P {false acquisition} = 0.0288. The standard deviation of bit jitter was almost
identical except for low signal—td—noise ratios where the bit jitter is lower
for split-phase data. Intuitively the bit- synchronization algorithm should
perform better for split-phase data because there are more transitions in the
split-phase data.

The bit error rate is significantly higher at low signal-to-noise ratios
for split-phase data. This effect is caused by the phase indicator slipping
180° out of phase which in t@rn causes bursts of bit errors. On the average
the phase indicator would slip 180° out of phase once in 315 bits. To reduce
the likelihood of phasé slips it was decided to use a larger number of bits
(i.e., larger N) in the decisioﬁ algorithm. With Pe =0.1, a threshold setting
of "66-out-of-90" results in P {acquisition} = 9,99998 x 10_l and P {false
acquisition} = 5.451 X 10_6. On the average, the phase indicator would slip

180° out of phase once in 9 x 107 bits. We simqlated the performance of the
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digital receiver with this decision criterion and compared the results to the
performance of the receiver with NRZ data (Figure 79 and Figure 80). The rms
bit jitter for both cases is nearly identical. The bit error rate for split-
phase data is slightly lower except at 0 dB. We observed that the bit synchro-
nizer slipped 180° out of phase causing bursts of bit errors much more often
tﬁén Equations (163) and (164) predict. This apparently results from the bit
errors not being independent. When the carriér or bit synchronization error

is large, the digital receiver makes a sequence of bit errors. The bit errors
are dependent, and thus Equations (163) and (164) do not hold. However, for
signal-to-noise ratios greater than 3 dB, Equations (163) and (164) .do accurately
describe receiver performance. The conclusion is that, with split-phase data,
large values of M must be used to get near optimum performance. The only bad

effect of increasing M is that it increases acquisition time.
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Automatic Gain Control - Bit Synchronizer

In Section 2.5 we investigated several techniques for automatic gain
control. We determined that the bandpass limiter was the preferred technique
for use with a phase-~locked loop, and in Section 3.1.6 we applied this technique
to the Costas loop. In this section we develop an AGC technique for the bit
synchronization loop.

The input sample to the bit synchronization loop is described by Equation

(165) in terms of the quadrature components and the Costas loop phase estimate.

A~

V=xcos 6+ ysin d (165)

By applying the techniques developed in Section 2.5, the equation for the in-

put signal with a bandpass limiter may be written as Equation (166).

V=—X— (og b + —L— sin 6§ (166)
(24 2 (24 2

Equation (166) should be evaluated using integer arithmetic to reduce computa-
tion time. However, there is no integer square root function available on the
CDC 3200. The bandpass limiter, therefore, cannot be used for AGC in the bit
synchronization loop.

Since we could not use a bandpass limiter, we determined that the most
efficient technique for AGC would be a hard limiter at the input of the bit
synchronizer. The input samples, V, are hard limited to + A volts. A curve
of standard deviation of bit jitter for the sample storage bit synchronizer
with and without AGC is given in Figure 81. Addition of AGC has significantly
reduced bit jitter. A curve comparing bit error rates for the original
digital receiver and the digifal receiver with sample storage bit synchronizer
and AGC in both the Costas loop and bit synchronization loop is given in
Figure 82, Note that digital receiver performance is slightly better with the

improved bit synchronization technique and AGC.
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3.1.8 Development of Integrated Program

In this section we describe the various computer programs developed for
demodulating PSK data. We describe the philosophy used in developing the pro-
grams, and give instructions for using the programs.

NRZ Data with Hard Line Bit Synchronization

We developed an algorithm for demodulating PSK signals with an NRZ data
format for use on the MDAC CDC 6600 hybrid computer facilities. This program
was optimized for use with a signal that has hard line bit synchronization
available. The hard line bit synchronization signal changes state from 0 to
10 volts to indicate the end of a bit period. All operations are done with
floating point arithmetic. The computer program for hard line bit synchroniza-
tion is shown in Figure 83 . The program variables are defined as follows:

SR = number of samples per bit

BR = number of bits per second

H = interval between samples

BWN3DB = noise bandwidth of Costas loop

BW = W, of Costas loop

AMP = A is the peak input signal amplitude without noise
ZETA = [

AK = K from Costas loop

BK a from Costas loop

TX = the correlator output
IOUT = bit stream, O to 1

X and Y are the input quadrature components

AJ the hard line bit sync signal 0 to 10 volts

Y1 the Costas loop phase output range * 7/2

ADC = output of analog to digital converter
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101

60

Pl = 3.14159
P12=2 » Pl

SR=20

BR=10

H=1/(BR * SR)

Hi=5+H

BWN3DB=.5

BW = (4« BWN3DB)/(2 * ZETA + 1/(2 » ZETA))
AMP =1 B

ZETA = SQRT (2)/(2)

AK =8 * ZETA * BW/AMP #» 2

BK = BW/(2 * ZETA)

DK =H » AK

CK = H+BK + AK

TX=0

X1=0

X2=0

0UT =0

X =ADC (01)

Y = ADC (02)

AJ = ADC (03) :
TEMP = (X %x 2 = Y +» 2) « SIN 2+ X1)/8+ X » Y » COS (2 « X1)/4
X1 =X1+H * X2 - TEMP » DK

X2=X2 - TEMP * CK

RIN = X1/PI + SIGN (.5, X1)

NNN = RN

QB=NNN.

Y1 =X1 - QB Pl

TX = TX + Hl = (X * COS (X1) = Y » SIN (X1))
IF = (AJ. LT. 5) GO TO 60

I0UT =0

IF (TX. GT. 0.0) I0UT =1

TX=0

DAC (01)=Y1

DAC (02) = I0UT

6O TO 101
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COSTAS LOOP WITH

HARD LINE SYNC Figure 83
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DAC = output of digital to analog converter
The program inputs are X and Y, the quadrature components, and AJ, the hard
line bit sync signal. X and Y must be normalized to an input amplitude of
1 volt in the absence of noise. Y1, the Costas loop phase, with a range of

ig » and the detected bit IoUT, 0 or 1, are the outputs from the program.

NRZ Data with Data Derived Bit Synchronization

We developed a digital receiver optimized for use with the Goddard CDC
3200 computer. The digital receiver uses two GSFC subroutines for input and
output of data on the CDC 3200 hybrid computer facilities. The subroutine
for data input is INDATA (INT, NPTS). INT is an array dimensioned NPTS + 2.
NPTS is the number of input samples buffered into the computer between compu-
tations. NPTS is used to establish the sampling rate. The first two elements
of INT are the quadrature component samples. The subroutine for data output
is DISTWO (NOUT) . NOUT is a 2 dimensional array whose contents are displayed
on the brush recorder. The contents of NOUT must be positive with a range
of 0 - 1000. A generalized flow chart for the digital receiver is shown in
Figure 84. Because integer operations on the Goddard CDC 3200 computer are
executed much faster than floating point operations, the MDAC Digital PSK
Receiver was implemented using integer logic and arithmetic. The receiver will
accept input samples generated form the IF Sampling technique or the quadrature
component sampling technique. However, the programs discussed in this section

assume IF Sampling,

Because the digital receiver was implemented using integer arithmetic,
it was necessary to scale the program variables and constants to keep as many

significant figures as possible without danger of integer overflow. (The range
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of integers is from -8,388,607 to +8,388,607.) Sine and cosine terms for the
Costas loop equations are computed by a table look up. A table of cosine values

is stored,>and sine values are calculated from the identity sinf=-cos (6+90°).

Digital Réceiver without Sample Storage Bit Synchronization

A listing of the digital receiver without sample storage bit synchroniza-
tion but with the DC bias remover is given in Appendix IV. This receiver is the
least complex version of those developed under this contract. The receiver has
no AGC in either the Costas or bit synchronization loops, but does have acquisi-

tion and tracking modes which are chosen by sense switch 3. Sense switch 3

must be turned on for tracking and turned off for acquisition.

This receiver is designed to operate with the IF sampler at 244 Hz IF and
the bit rate at 12.2 bits/seconds and uses the subroutine INDATA. For the
subroutine INDATA NPTS must be set to 4. The first two samples from INDATA
are the signal quadrature components as described in Section 3.1.1.

For the receiver to operate efficiently without hard limiting, an estimate
the expected signal-to-noise ratio in the information bandwidth must be obtained
for input scaling. This value in dB; SNR, should be a conservative estimate
of the signal-to~noise ratio. Using an estimate lower than the actual signal-
to-noise ratio will not significantly effect performance of the receiver.

On the hand, too high an estimate may result in an integer overflow causing
program interrupts. The value of SNR along with the time constant, T, of the low
pass filter expressed in bit periods for the DC bias remover are input

on the same card in (F20.6, I10) format. T is normally set at 200 bit periods.
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The next five parameters are all read from one card in (2I10, 3F20.6)
format. They are: N, the time constant of the bit synchronization loop for
acquisition expressed in bit periods; ISR, the number of samples per bit;
BR, the number of bits per second; BWN3DB, the noise bandwidth of the Costas
loop for acquisition; and SP, the peak signal voltage input to the A/D con-
verter. N is a positive integer greater than zero. N must be less than 280
or an integer overflow will result due to scaling in the program. ISR must
be an integer multiple of 4. The maximum Costas loop noise bandwidth is
limited by sampling theorem requirements; that is, the sampling rate must be
2 to 10 times greater than the reciprocal of the loop noise bandwidth.
Setting the sampling rate a factor of 5 times the reciprocal of the noise
bandwidth will prevent Costas loop stability problems. BR is set equal to
the number of bits per second. SP 1s used to scale the quadrature components
IX and IY, and should be set to the peak-to-peak signal input voltage to the
A/D converter in the absence of noise. The parameters for the tracking mode
are both input from one data card in (110, F20.6) format. NB is the time
constant of the bit synchronization loop in bit periods, and BWA is the
Costas loop noise bandwidth. Typical parameters for the receliver operating
with the IF sampler at 244 Hz IF and with a bit rate of 12.2 bits/second are

listed here.

N = 10 bit periods
ISR = 20 samples/bit
BR = 12,2 bits/second
BWN3DB = 1.0 Hz

SP

1.0 volts

NB = 280 bit periods
BWA = 0.0625 He
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The receiver has multiple outputs which are controlled by sense switches
1 and 2.  The program outputs are: the detected bit, TOBIT; the Costas loop
phase estimate, IXX; one input quadrature component, INT(1); the bit synchro-
nization error signal, IR; and the correlator integral, ITX. IOBIT is a bi-
nary signal, 0 or 1, and is scaled to O or 1000 for display on the brush re-
corder. IXX has a range of - %-to + -% and is scaled to a range of 0 to
785 for display. For INT(1l), 512 on the brush recorder corresponds to 0
volts. IR is the number of samples of bit timing correction, for which 600
on the brush recorder corresponds to 0 correction. One sample of correction
is an increment of 40 on the brush recorder. For ITX, ISR*15 on the brush
recorder corresponds to 0 volts. Sense switch 1 must be turned off to dis-
play IOBIT and INT(1). Sense switch 1 must be turned on, and sense switch 2
must be turned'off to display IOBIT and IXX. Both sense switch 1 and 2 must
be turned on to display ITX and IR.

Nine input parameters together define the scaling constants, the sampling
period, and the Costas and bit synchronization loop parameters for acquisition
and tracking. From these parameters all scaling and input-output parameters
are computed.

A listing of the digital receiver with sample storage bit synchroniza-
tion and the DC bias remover is given in Appendix V. This receiver has AGC in
both the Costas and bit synchronization loops, and also has acquisition and
tracking modes which are chosen by sense switch 3. Sense switch 3 must be
turned on for tracking aﬁd turned off for acquisition. This listing is for
the receiver sef to operate with the IF sampler at 244 Hz IF and the'bit rate
at 12.2 bits/second. The receiver uses the subroutine INDATA with NPTS set

to 4. The first two samples from INDATA are the signal quadrature components

143

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



DIGITAL RECEIVER STUDY ' MDC E0648
AND IMPLEMENT ATION 1 JUNE 1972
as described earlier.
In developing this receiver we devoted considerable efforts to the
scaling probléms encountered in converting the Costas loop and bit synchro-
nization loop equations from floating point to integer arithmetic. We
scaled the Costas loop equations from floating point to integer arithmetic.
We scaled the Costas loop equations for operation over a wide range of loop
noise bandwidths from 1.18 x 10_2 to 1.18 x 101 Hz. A wide range of band-
widths is necessary for the Costas loop to acquire large offset frequencies
rapidly before switching to a tracking mode. The loop bandwidth changes three
orders of magnitude, but one of the bandwidth related parameters changes from
10_6 to 103 - nine orders of magnitude. In order to keep as many significant
figures as possible without danger of integer overflows, we divided this
bandwidth range into nine divisions.
Then we scaled the bandwidth related parameters and the Costas loop equations
to keep either two or three significant figures for each of these divisions.
Three significant figures are used for SNR greater than 5 dB, and two signifi-
cant figures are used for SNR less than 5 dB.
The digital receiver with sample storage bit synchronization uses the
same input parameters as the digital receiver without sample storage bit synchro-
nization. Because this version of the digital receiver has AGC, the receiver
does not depend on SP, the peak signal amplitude, for correct loop again. The
input peak signal voltage must only be large enough to prevent A/D converter
quantization problems. The AGC removes receiver dependence on the input signal

amplitude. The receiver outputs are the same as those described for the digital

receiver without sample storage bit synchronization.
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Split-Phase Data with Data Derived Bit Synchronization

We developed a digital receiver for use with split-phase data format.
This receiver is identical to the NRZ receiver except an "N-out-of-M" detector
has been added to determine phase for bit synchronization (N=66 and M=90).

A listing of the digital receiver for split-phase data format is given
~in Appendix VI. This receiver has the DC bias remover and AGC in both the COS-
tas and bit synchronization loops. The receiver has acquisition and tracking
modes which are controlled as before by sense switch 3. This listing is for
the receiver set to operate with the IF Sampler at 244 Hz IF and the bit rate
at 6.1 bits/second. The receiver uses the subroutine INDATA with NPTS set to

4. The first two samples are the signal quadrature components as described
in Section 3.1.1.

The digital receiver uses the same input parameters that are used in the
NRZ case. However, the time constant of the bit synchronization loop is
limited to 140 bit periods, and the number of samples per bit, ISR, must be
an integer of multiple of 8.

The receiver has multiple outputs which are controlled by sense switches
1 and 2. The program outputs are: the demodulated bit stream, IOUTT; the
Costas loop phase, IXX; the coded split-phase signal before demodulation,
IOBIT; one input quadrature component, INT(2); and the bit synchronization
error signal, IR. IOUTT is a binary signal, 0 or 1, and is scaled to 0 or
1000 for display on the brush recorder. All the other outputs are scaled
as described for the receiver without sample storage bit synchronization.
Sense switch 1 must be taned off to display IOUTT and IXX. Sense switch 1
must be turned on, and sense switch 2 must be turned off to display IOBIT and

INT(Z).V Both sense switch 1 and 2 must be turned on to display IOUTT and IR.
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Baseband Digital Receiver with Data Dervied Bit Synchronization

We developed a digital receiver for use with NRZ data that has already
been converted to baseband. This receiver was developed from our digital
PSK receiver. Since the data is at baseband there is no need for a carrier
tracking loop in the receiver. Only a bit synchronization loop and a cor-
relator are necessary for the baseband receiver. To develop the baseband
receiver we modified our digital PSK receiver by removing the Costas loop
equations. The remaining receiver functions are unchanged.

A listigg of the baseband digital receiver for NRZ data is given in
Appendix VII. The receiver has AGC, the DC bias removes, and acquisition and
tracking modes controlled as before by sense switch 3. The listing is for
the baseband receiver operated with a bit rate of 12.2 bit/seconds. The in-
put bit stream was sampled directly by the A/D converter with a sampling fre-
quency of 976 Hz. The baseband receiver uses every fourth sample from the
A/D converter effectively reducing the sampling frequency to 244 Hz (20
samples/bit).

The expected signal-to-noise ratio, and the time constant of the low
pass filter in the DC bias remover are input as described previously. The
next four input parameters are all read from one card in (2I10, 2F20.6) for-
mat. They are: N, the number of bit periods in the time constant of the
bit synchronization loop for acquisition; ISR, the number of samples per bit;
BR, the number of bits per second; and SR, the peak signal input voltage.
The number of bit periods in the time constant of the bit synchronization

loop for tracking, NB, is read from one card in (I10) format.
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The receiver has multiple outputs which are controlled by sense switches
1 and 2.‘ The receiver outputs are: the detected bit, IOBIT; the correlator
integral, ITX; the bit synchronization loop error signal, IR: and the input
baseband NRZ data, INT(2). All these outputs are scaled as described earlier
in this section. Sense switch 1 must be turned off to display IOBIT and
INT(2). Sense switch 1 must be turned on, and sense switch 2 must be turned
off to display IOBIT and IR. Both sense switch 1 and 2 must be turned on to
display IOBIT and ITX.

3.1.9 Study of Acquisition Techniques

We designed the Digital PSK Receiveﬁ with the philosophy that receiver
operation be totally "hands off" once the computer program is compiled. To
that end, all scaling, parameter definitions, and input-output operations are
performed automatically after the user inputs nine parameters on data cards.
In free running acquisition, the user must decide when the receiver has
locked on to the noisy signal and then switch the receiver to the tracking
mode. The user must also ascertain when the receiver loses lock while track-—
ing and then switch the receiver to the acquisition mode. To make receiver
operation fully "hands off", we designed logic to indicate when the receiver
is in lock and studied two automatic acquisition techniques.

~Acquisition Indicator

In'practical applications of phase-locked loops, an indication of lock
is obtained by beating a 90° phase shifted version of the VCO output with the
input signal, low pass filtering this result, and then thresholding the low
pass filter output. Unfortunately, this simple technique is not applicable
to the Costas loop because of the phase modulation of the input signal. This

technique, if it could be applied to the Costas loop, would also only indicate
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that the carrier tracking loop is in lock. For the digital receiver, a
technique is ﬁgeded that will indicate when both the carrier synchronization
and bit synchronization loops are in lock. Intuitively, the correlator out-
put from the digital receiver is a good indicator of lock. For the correlator
output to be correct, both good carrier synchronization and good bit synchro-
nization are required. In lock with no noise the correlator output will be
either + AT or - AT. To use the correlator output as an indication of lock,
it is necessary to remove the data dependent sign changes since the magnitude
of the correlator output is the parameter of interest.

Using this philosophy, we designed an acquisition indicator. The
correlator output is passed through an absolute value nonlinearity, low pass
filtered, and thresholded to determine acquisition status. We determined the
mean and variance of the correlator output in both the in~lock and out-of-lock
cases. For the out-of-lock case, we assume that the bit timing error (mno
noise) was uniformly distributed between ~0.5 T and +0.5 T, and that the

Costas loop phase error was uniformly distributed between ~-w and +m. The mean

correlator output due to signal alone is theﬁ 0 and the variance is 5(AT)2/12. For
the in-lock case, the mean correlator output is AT, and the variance is zero. We
computed the mean, z, and the variance, 0,0 of the signal at the output of the
absolute value nonlinearity from Equations (167) and (168) where u and 02 are the

mean and variance of the correlator output.

2
- B
2 —
z = gg—-e 20 +u erf’[igg] ) (167)
V2T
02 = 02 +‘ 2 - 22
z M (168)

For the in-lock case, at 0.0 dB our analysis predicted the mean and variance

of the signal at the output of the absolute value nonlinearity to be 1.05 and
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0.39 respectively (the correlator output has been normalized to 1;0). A
digital Simulation at 0.0 dB showed a mean of 0.97 and a variance of 0.38.

For the oﬁt—of lock case, at 0.0 dB we predicted a mean of 0.76 and variance
of 0.33. A digital simulation of the out-of-lock case showed a mean of 0.75
and a variance of 0.29. These results validate our analysis of the acquisition
indicator performance. To decrease the variance we passed the output of the
absolute value through a low pass filter with a time constant of ten bit
periods. Our analysis and simulation show that the threshold should be set
between .9 and .99 to insure a high probability of acquisition. Typical
performance of the acquisition indicator in the absence of noise is shown in
Figure 85 along with the bit tracking and phase tracking errors. The output
fluctuates around the mean out-of-lock value (0.5) until the bit tracking
error is less than 0.1 T and the phase tracking error is less than 0.5 radians.
The output then charges up to the mean in-lock value (1.0) as the tracking
errors go to zero. A strip chart recording made at NASA Goddard with the
Digital PSK receiver showing the acquisition indicator and the Costas loop
phase is given in Figure 86 . These results indicate that this technique
generates a valid indication of lock.

Stepped Bandwidth Acquisition

One simple approach for automatic acquisition is to operate the receiver
with a wide bandwidth initially and then narrow the loop bandwidths in steps
as the acquisition indicator crosses successively higher-fhreshold values.
When the acquisition indicator drops below Ppreset threshold values, the
loop bandwidths are widened automatically to reacquire. This technique
requires that any initial offset frequency be within the pull-in range of

the widest loop bandwidth used.
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We experimentally investigated acquisition with this technique using a
Costas loop Wi;ﬁ_three bandwidths 1.0 Hz, 0.25 Hz, and 0.0625 Hz. The initial
bandwidth of 1.0 Hz is reduced by a factor of 4 when a threshold of 0.90 is
crossed, and is again reduced by a factor of 4 when a threshold of 0.95 is
crossed. With no noise and with offset frequencies within the pull-in range
of the loop, the bandwidths are reduced as desired and the receiver acquires
without difficulty. However, for any acquisition technique to be practical,
it must result in receiver acquisition at low signal-to-noise ratios;i.e.,0.0

to 3.0 dB. We were unable to acquire using this technique at less than

%— = 3 dB. The acquisition indicator would cross one threshold for a few seconds,
bzt would then go below threshold again. At low signal-to-noise ratios the
acquisition indicator caused instabilities with this technique. We investigated
receiver acquisition with other loop bandwidths and threshold levels, and had
similar results. Although this technique is very simple to implement, its
performance at low signal-to-noise ratios was unsatisfactory.

Swept Frequency Acquisition

A common approach for acquisition in phase-locked loops is the swept
frequency method discussed in Section 2.6.1 and Section 2.8.3. This approach
was applied to the digital receiver for automatic acquisition. The VCO fre-
quency of a very narrow bandwidth Costas loop is swept until the acquisition
indicator crosses threshold. The frequency.of the sweep when the thredhold
is crossed is used as the initial condition on the VCO frequency of the Costas
loop in the tracking mode. If this frequency is within the pull-in range of
‘the Costas loop, the loop will rapidly acquire. Once an accurate phase reference

is established, the hit synchronization loop will also pull-in rapidly.
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+

The swept VCO output is cos [wot + 6(t) + ¢(t)] where $(t) = w; t + %—a t2.

The initial sweep frequency is wy rad/sec, and the sweep rate is o rad/sec/sec.
Because the frequency offsets encountered in practice at NASA Goddard are.less
than 1.0 Hz, the initial frequency is usually set at -27 or -7 rad/sec. The
frequency is then swept to the final frequency, Wg, either at +27 or +m rad@éc.
If the Costas loop has not acquired by this time, the sweep 1s initialized

to Wy and swept again to We When the threshold is crossed at ta’ VCO frequency

is computed, w = wi + uta. wa‘is,then used as an inifial condition on the
frequency of the Costas loop. 1If the acquisition indicator falls below frequency

threshold at any time, the Costas loop is automatically swept again.

Because the Costas loop is operating in a non-linear mode during acquisi-
tion, it is impossible to analytically determine the sweep rate to insure a
high probability of acquisition. For this reason a digital simulation must be
used to determine the sweep rate. In Sections 2.6 and 2.8.3 we investigated
probability of acquisition for a phase-locked loop with various sweep rates
using a digital simulation and compared these results to those obtained by
Frazier and Pageg. We then investigated probability of acquisition for the
digital receiver using a digital simulation. For the noise free case we found
that the Costas loop would not acquire with a sweep rate which insﬁred a pro-
bability of acquisition of 1.0 for a phase-locked loop. Both loops were
operated under the same conditions; i.e., identical loop noise bandwidths and
identical sample rates, with no noise. 1In general we found that the Costas
loopvmust be swept almost an order of magnitude slower than a phase-locked loop
to acquire. This may be.attributed to basic differences in the Costas loop and
the phase-locked loop. ' First, the Costas ioop has a smaller linear range than

the phase-locked loop. This is because the error signal for the linearized
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Costas loop is proportional to sin [2(8 - 8)] whereas the error signal for

the 1inearized phase-locked loop is proportional to sin]6 -~ 6], Second, the
phase error variance for the Costas loop (Equation 169) is greater than the phase
error variance for the phase-locked loop for the same loop noise bandwidth,

B, (Equation 170).
N B NW

o2 =2 |1 +-2 (169)
o A2 22
2 NoB
g ¢ = 3 (170)
A

W = bandwidth of low pass filters in Costas loop

Z|!>

= signal-to-noise density ratio

o

The Costas loop generates cross terms between the signal and noise as well as
squared terms. These factors account for the differences in acquisition for
the Costas and phase-locked loops.

The swept frequency technique can be used for automatic acquisition, but
the Costas loop VCO frequency must be swept slowly. However, for the small

uncertainty expected in frequency, the low sweep rates are not restrictive.

Variable Sampling Rate for Acquisition

In the phase-locked loop study, we sampled at a rate consistent with
the maxiaum expected offset frequency. However, during normal tracking
operation,the frequency at the output of the loop phase detector is much
less than the offset frequency. After acquisition has occurred, the
sampling rate required for tracking (at high signal-to-noise ratios) need
only be consistent with the ﬁandwidth of the tracking loop. In order to
increase the efficiency of our PSK demodulator, we investigated the use

of a variable sampling rate acquisition technique.
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There are several problems associated with mechanizing this approach
For hlgh sampllng rates, there is insufficient time to perform all calcu-
lations between samples, Since a good phase reference is basic for all
receiver functions, the Costas loop is operated alone at a high sampling
rate until the signal is acquired, Then the sampling rate is lowered so
that all receiver functions can be executed, |

The most difficult problem with this technique is that of controlling
the sampling rate from the digital computer, Witﬁ the quadrature component
sampling technique, it is necessary to physically change the rate at which
the A/D converter samples the quadrature components, This must be done by
changing the sampling frequency -of the A/D converter, Thus, operation of
the digital receiver is interrupted while the sampling frequency is manually
reduced. This method is not attractive since it requires a special A/D
converter.

The probiem of controlling the sampling rate from the digital computer
is easily solved using the IF sampling technique, Section 3.1.1 discussed
the IF sampling technique. We showed that the digital processor can change
the effective sampling rate by discarding certain samples. For example,
the first two samples from S/H 1 in Figure 52 are quadrature samples
of 0.97 KHz IF, The digital processor can fix the interval between samples
of the quadrature components at 1,02, msec by discarding the next two
samples from S/H 1 before accepting the fifth and sixth samples as the
next pair of quadrature samples, The digital receiver could operate the
Costas loop alone with a 1,024 msec interval between samples of the
quadrature components, After the Costas loop acquires, the interval

between samples of the quadrature components is lengthened to 2.048 msec
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by discarding six samples between pairs of quadrature component samples.,
After reducing sampling rate, all receiver functions are executed. In
order to yeduce the sampling rate it is necessary to change the variable
NPTS in the subroutine INDATA from 4 to 8 using a sense switch., The sampling
rates 1,02, msec and 2,048 msec were only used for an example of variable
sampling rates at .97 KHz IF. Following the method outlined here, the user
defines the sampling rates to be compatible with the IF frequency being used,
Thus, variable sampling rate acquisition appears to be an attractive
technique for acquiring over wider frequency uncertainities than would

normally be possible,

3.2 Digital PSK System Performance Analysis

The Digital PSK program was developed and optimized especially for
the NASA Goddard CDC 3200 computer. For instance, the program was
written with all integer operations to get minimum computation time
with no floating point hardware on the NASA Goddard CDC 3200.

It was scaled to get the maximum possible resolution (i.e. minimum
quantization) without danger of a variable overflow. The program in its
Fortran version has a maximum bit rate (at foﬁr samples per bit) of
approximately 80 bits/second. Rewriting this program in machine language
would considerably increase the maximum bit rate.

The basic parameter in the PSK system evaluation is bit error rate,
however the statistics of the phase error and bit timing error are also
of interest for complete system optimization and analysis. Although
the optimum possible performénce of a PSK demodulator is well known
and presented in Equation (171) in terms of the signal power to noise

. . E . . .
density ratio, N this is not really sufficient for comparisons since
o)
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it ignores the effect of non-perfect synchronization.

=1(;_ ,E__
Pe 2 (1 erf No) ) (171)

Most systems will approach this bound as the bit sync and carrier tracking
bandwidths go to zero; however no system can achieve this performance for
wideband carrier phase and bit rate variations. We obtain expressions
which relate phase error and bit timing statistics to our system parameters.
These are then related to the bit error probability of the total system.
These results can then be compared with the bit error probability achieved
with perfect phase and bit timing and the error probability achieved with

other non-ideal systems.

3.2.1 Sampling Losses

The first E/N0 loss in a digital system comes from the finite
sampling rate. The low-pass filters (or bandpass filters for IF sampling)
which precede the A/D converter must be wide enough to pass the uncertainty -
or variations in carrier frequency. Normally.it might be supposed that the
bandwidths of these filters were not very critical since if they were too
wide the extra noise could be filtered out digitally within the computer.
However this is not completely true for two reasons. First, the limited
dynamic range of an A/D converter makes the quantization error of the
digital processor dependent on dynamic range and thus bandwidth of the
noisy input. Second, the finite sampling rate of the A/D converter limits
the degree to which the noise can be filtered out. Aliaéing or spectral
fold-over causes an effective increase in the input noise density. This
effect is decreased by inéreasing the sampling frequency to several times

the low-pass filter bandwidth.
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The loss in E/No due to aliasing of the noise spectrum is shown in
Figure 87 fof the case of a single break RC filter. This figure assumes
that the bandwidth of the signal is such that it is unaffected by the
filtering before A/D conversion. Note that the losses shown in Figure 87
could be reduced by using sharper cut-off filters or completely eliminated

by using a perfect integrate and dump filter.

Another consideration in choosing the iow pass filter bandwidth is
the degradation due to intersymbol interference. TFigure 88 shows the
degradation in signal-to-noise ratio from intersymbol interference as a
function of bandwidth and bit error rate. The best choice of low pass filter
bandwidth corresponds roughly to the value for which the loss due to inter-
symbol interference is equal to the sampling loss. Figure 89 shows a plot
of the combined intersymbol interference and sampling loss ds a function of

bandwidth for a probability of error of 107°

and 20 samples/bit. This
indicates that a good choice of bandwidth (for low probabilities of error

and 20 samples per bit) is three to three and one half times the bit rate.

The loss in performance due to quantization error is determined by the
sample S/N (i.e. the S/N in the low-pass filter bandwidth). Let 2A be the
total spread of the quantization levels, 02 the variance of the input
noise samples, and S the amplitude of the input signal.

Let A =S + 3¢ (172)
so that each sample lies within the quantization levels +A with high
probability, The distribution of the quantization noise, nq, will be

approximately uniform,
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Q/2A for -A/Q j_nq < A/Q
(173)

P(nq)

0 for lnql > A/Q

where Q is the number of quantization levels. Thus the variance of the

quantization noise (cn ) is given by Equation (174),
q

2
A 2 2
o =—= = [ s+ 30]°/3Q
"q 3Q2 (174)

With a frequency offset, the quantization noise samples will be approximately

independent, sample to sample. Thus, the bandwidth of the quantization noise

will be approximately a factor of 10 greater than the signal bandwidth.

This implies that effective quantization noise power (in the signal bandwidth)

is actually about 1/5 o, We will ignore the improvements due to filtering
q

of quantization noise and obtain an approximate expression for the total

system signal-to-noise ratio (S/N)t°

2
s
s/mNy, = 2 (175)
3Q
S2
For~—§ = 100 and Q = 32 levels, the increase in noise is only on the order
o]

of 10% and the effect decreases with increasing s/o. Thus the effect of
quantization is not expected to be significant for the Goddard CDC 3200
2l

2 : .
), although quantization noise may be significant in a special

(Q =

purpose hardware implementation.
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Low Resolution Sampling and Processing

We experimentally investigated the effect of reducing the number of bits/word
both in the A/D converter and in the digital processor. We were particularly
interested in whether reducing the number of bits from 12 (the word length

of the A/D converter used with the GSFC CDC 3200) to 8 would significantly
degrade performance. 8 bits is particularly convenient for a hardward imple-
mentation in that 8 bit read-only memories for the sine table look~up routine
are readily available. Section 5 discusses the advantage of using an 8 bit
word length. Reducing the word length from 12 bits to 8 bits caused no
measurable change in the probability of bit error or the phase error variance

atEL-= 3 db. The timing error variance increased from .293 to .269 (measured

N
o

E
in terms of time between input samples). At N - 9 db there was still no
)

measurable degradation in bit error probability, although the phase error variance
increased from 2.0 x lO_4 to 2.1 x 10_4 radians and the timing error variance

increased from .158 to .160 sample periods.

The A/D converter can operate with fewer bits/word than the digital processor

when angle modulated signals are demodulated. Experimental results indicate

that hard-limiting the PSK before sampling results in approximately 1.0 db loss
in output E/No' However, since A/D converter speed is not really a problem
in increasing bit rate, there does not appear to be any reason for looking

at low-resolution, high speed, A/D converters.

Analytical results discussed earlier in this report indicate that decreasing
the number of bits/word beléw 6 causes a degradation in performance especially

for large values of E/N_.
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3.2.2 Losses Due to Imperfect Phase Synchronization

The loss.in E/No due to imperfect bit and carrier synchronization cannot
be easily predicted or even tightly bounded without several very restrictive
assumptions. This section will present techniques for predicting losses due
to imperfect synchronization and compare these results with experimentally

determined data.

The first step in determining the eifect of phase reference error is to
define the statistics of the phase error. We will assume that the sampling
rate is sufficient to make the dynamics of the digital Costas loop appear
continuous. The effect of sampling is accounted for by using the sample
signal-to-noise ratio as the continuous loop input signal-to-noise ratio.
The phase error distribution function has been shown 19 to be approximated

by the right-hand side of Equation (176). o and B are functions of the Costas

¢ t/ﬁﬂ -Bx - acos x (176)
e dx
¢

e(acosd: + B¢)
2 -Bm
e

P(9) =

2
41 leB ©)]

loop parameters and the input signal-to-noise ratio, and IJB(X) is the
modified Bessel function of imaginary order and of argument x. For high
loop signal-to-noise ratios, Equation (176) is approximately Gaussian,
whereas for low signal-to-noise ratios, it approaches a uniform distribution.
The probability of bit error for imperfect phase synchronization can then be
expressed as in Equation (177) for the case where the Costas loop bandwidth

is much less than the bit rate frequency.
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Pe = [ [1 - erf (‘E— cos ($))] P(6) do (177)
2. o

For large loop signal-to-noise ratios the Costas loop is nearly linear;

thus, the. phase error variance can be approximated as shown in Equation (178).

N B N W
o£=L2 1+ (178)
A . 2A

W is the bandwidth of the low-pass filters G(s). 1If G(s) are integrate-

and-dump filters, then W = E% where T is the integrate time. B is the band-
2

width of F(s), and %— the signal-to-noise density ratio. Equation (178) indi-
o)

cates an objectionable property of the Costas loop. The Costas Loop generates
cross terms between the signal and noise as well as squared noise terms.
These terms cause loop performance to be directly dependent on bath the
bandwidth of the two low-pass filters G(s) and the loop filter F(s)

(Figure 57). As our Digital PSK software is presently configured, the
bandwidth éf the two low-pass filters labeled G(s) 1is assumed to be the

same as the bandwidth of the analog low-pass filters used in the quadrature
component gereration. By proper manipulation this allows the digital
filtering operation. This simplifies the digital Costas loop implementation,
but it also makes the bandwidth of the external analog filters more

critical. 1If the low-pass filter bandwidths are too wide, the extra

noise will cause signal suppression when the outputs of the low-pass filters
are multiplied together. ‘'This will increase the phase variance oi as

indicated in Equation (178). Figure 90 is a plot comparing the phase vari-

ance from the Digital PSK program and the linear theoretical value given by
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Equation (178) The linear theoretical values for phase variance are only
accurate.when the signal-to-noise ratio in the bandwidth of the G(s) filters is
high. Figure 91 is a plot of probability of error as a function of
signal-to-noise ratio with the phase reference supplied by a Costas loop.

This figure assumes Gaussian phase error with a variance given by Equation
(178). To simplify analysis of losses due to imperfect phase reference,

Figure 91 shows the probability of error as a function of %- and
o

the phase filter oi (assuming Gaussian phase error).‘ Thus to determine
the loss in signal-to-noise ratio, the designer first determines the phase
variance either by simulation or by Equation (178) and then uses Figure 91

to determine the loss in error rate performance.

3.2,3 Losses Due To Imperfect Bit Synchronization

The analysis of bit synchronization errors is somewhat more difficult
since the bit synchronization estimate is limited to one of N discrete

values (where N is the number of samples/bit). It has been shown that

the mean absolute value of the bit timing error is inversely proportional
to the square root of the signal-to-noise ratio (in the information
bandwidth) and the square-root of the time constant of the averaging filter in
bit tracking loop. Although these results were obtained for analog bit
synchronizers, they also hold approximately for digitally implemented bit
synchronizers.

Appendix III presents an analysis of mean square timing
jitter for the bit synchronization technique used in the Digital PSK’
program. Figure 92 coﬁpares the theoretical timing jitter rms value
with that measured in the Digital PSK program for a bit synchronization

loop time constant of 10 bit periods and 80 samples/bit. Figure 93 shows:
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the effect of the bit tracking loop bandwidth (or time constant) on rms
timing jitter oT. The rms timing jitter can then be approximately
related to the average loss in signal-to-noise ratio as showﬁ in Equation
(179) for the high signal-to-noise ratio case. This result assumes

Gaussian distributed phase error and a bit width T. The effect of

2
ZNIT a7
(S/N) = 10 log [1 ~ —— + —= ] (179)
Loss 2w 12

sampling rate on rms timing jitter is shown in Figure 94 which was
determined by simulation. Thus, the increase in probability of error
due to imperfect bit synchronization is determined by first calculating
the rms value of the bit timing error using the loop parameters and then

calculating the increase in probability of-error.

3.2.4 Performance Evaluation

The past sections have compared theoretical predictions and experimental
measurements of various subsystem output statistics such as the phase
error and bit timing error variance; This section will look at the total
system and will compare theoretical predictions and experimental measurements
of probability of error for the entire MDAC Digital PSK receiver.
Since demodulation of deep space telemetry is one of the chief applications
of interest, it 18 especially important that the MDAC Digital Receiver
operate as close to the theoretical optimum as the bit timing and frequency
stability will allow. It is also important that the receiver be flexible
and versatile without saérificing error rate performance.

Figure 95 is a comparison of optimum theoretical error rate

performance with experimental data taken using the NASA GSFC CDC 3200
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computer. This data was taken using the sample storage bit synchronizer
and NRZ data. Figure 96 presents a similar comparison except that

AGC was added for this set of measurements. Comparison of Figure 95

and Figure 96 indicates that AGC does not cause a perceptable
degradation in error rate performance. Note that the MDAC Digital receiver
is operating within less than 2dB of theoretical. This data was taken
without optimizing the pre-sampling IF filter bandwidth. The very low IF

frequency (244 Hz) was chosen to simplify obtaining IF bandwidths on the

order of 100 Hz or less. The pre-sampling bandpass filter was constructed
using low-pass and high-pass filters with overlapping passbands. Figure 97
shows the transfer function of the optimized IF filter used to obtain

the experimental data shown in Figure 98 ., Note that the experimental data
taken with this IF filter is within 0.5 dB of the theoretical optimum.

This is within the measurement error of the experiment since E/N can
(o]

generally not be measured more accurately than 0.5 dB with standard Gaussian
noise sources.

Figure 99 sgshows a plot of experimental error rate performance
with split phase data using a "66 out of 90" phase detector algorithm.
Even though this data was taken without optimizing the pre-sampling

IF filter, the experimental data is within 1.0 dB of the theoretical

op timum.
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4. STUDY OF NON-ANALOG SYNTHESIS TﬁCﬁNIQﬁES.

One of the reasons for studying digital signal processing is that it
provides a capability for implementing certain processing techniques which
would be difficult or impossible with analog techniques. In particular,
techniques which cannot be represented in terms of lumped parameter elements
(for example, ideal time delays, two-dimensional processing algorithms, etc.)
are difficult to implement with analog hardware. The restriction to one-
dimensional processing prevents thé development of optimum detection and
estimation algorithms with analog hardware for many cases of practical
interest. This follows by noting that, in the general case, an optimal detection
or estimation algorithm generates and uses a conditional probability density
of the state variable. Since this density changes with time, it is at least
two—&imensional and may be considerable larger if other so-called ''nuisance'
state variables are involved. For sampled data inputs, the conditional
probability density of.the state vector is determined using Bayes law.

4,1 Bayesian Estimation

We assume that at any time tk+1 the system equation governing the evolution

of the state are of the following form.

£(x, W) ' (180)

fn

Zir1 = B Yienn) (181)

where X, 1is the state vector, V, the measurement noise, 2, the measurement, and

Ek the state disturbance, all at k.
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Let zk+l = (51’ s §k+l) be the set of previous observations. Then by
definition
PEepr Dgr | B = Py | 2 X)) Py | 8D (182)

P | B B P | B B P | 5y o

(183)

From Equation (180)%nd Zquation(181),we note that
Py | B X0 =P, | X)) (184)
P | 8o Xp) = P(Zy, | 1)

Therefore

PRrr Gy | B = fP(£k+l | Ee) P&y |2 P | B ax

(185)

(186)

Finally, we obtain the solution for P(§:k+1 | Zk+l) by noting that by definition

P(Xy1> Zeay | B
P@kﬂ, k+1 = . : (187)

P(Zyy | )

Given P(§k+l | zk+l)’ we can compute the optimal estimate of )—(k+1 using any
criterion of optimality we desire. For instance, the maximum likelihood estimate
would be th

e the value of X‘k+l which maximizes P()_(k+1 I Zk+1)'
To illustrate the use of this approach, we consider the problem of tracking

the phase of a sine wave in noise. For this case the state vector ék contains

the phase and frequency of the sine wave, that is
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a o}

et = Y (188)
o b

where

X = i )

=k (189

. ek

f. is the frequency offset at time k and 86, is the phase offset at time k.

k k

The measurement vector is given by

cos(ek + kATfk) ]

Z, = + Y, (190)

-sin (ek + kATfk)J

AT is the time between samples and Ek =k
b
k

The measurement noise and the state disturbances are modeled as bivariate

gaussian random variables with zero mean and covariance matrices given by

cov(wk) = Q and cov(Vk) = R.
T
127 71 . fre1 ~ 86y 1 Fer1 ~ 35\
P, | %) =27 [0 e |- Q (191)
ktl 2\o, .. - bs o, ., - be |
k+1 k k+1 k
1217 | Pk T cos(By g + KATEL ) 1
P2 | X)) =[2w R el-> Rl (192)
k+1 +1 2\ b, ..+ sin(e, .. + KATE. )
k1 T Sk k+1
a iy " cos(ek_’_1 + kATfk+1)

bk+l + Sln(ek+l + kATfk+l)
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P(§k | Zk) is gvailable from the previous step. P(g_k+l | Zk) is independent

of p:% and thus can be easily determined by noting that
Py | Byn) Py | B = PGBy By | Y (193)

and integrating both sides with respect to zk

P(Zyy | 0 = f PEigrs By | B Xy (194)

Thus P(Zk+1 | Ek) is a constant (i.e. independent of gk) picked to normalize

P(§k+l’ Zk | ik). Note that for computer implementation P(§k+1 l Zk) is only
evaluated at a finite set of values of §k+l' Thus the integration shown in
Equations(186) and(194) reduces to a double summation over the possible values

of and fk' Thus combining the results of Equations (186), (191), (192), and

ek
(194),we note that P(gk | Zk) is completely specified.

-

To obtain the optimum Bayesian estimator for a PSK system, the state véc£o;

zk should contain the phase offset and frequency offset, the bit timing and

the data bits. This would require a four dimensional state vector. In order

to reduce the dimensionality of the Bayesian estimator, carrier and bit syn-
chronization are performed separately as is shown in Figure 100 . This is not
an optimum Bayesian estimator since the carrier synchronization is only optimum
for the leading edge of the bit, t, and the value of the bit, S, known exactly,
and the bit synchronization is only optimum for the phase offset; 8, and the
frequency offset, f, known exactly., But, it approaches the optimum as better

A A

estimates of 17, @, f, and S are obtained.
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The Bayesian carrier estimator, assuming perfect bit synchronization, is

givén by Equations (186)and (187lith the state vector of Equation (188) the

measurement vector of Equation (190),and the conditional densities of Fquations

(191) and (192)

Now, the Bayesian bit estimator, assuming perfect carrier synchronization,

is given by

P(Tp1s Sirn Zern | B0

P(Zyy |2

P(Tp1s Sian | B

and

P Sian Bt | B = Py | Tigps Sip) fP(Tk+l | By
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with the state equation for the bit edge of

et T % e T % (197)
where again t denotes the time and Sk is the value of the bit at time te

The state disturbance is modeled as a Gaussian random variable with zero

mean and variance GTZ which yields

-1/2 1

2 2
P(Tk+l l Tk) = [Zn oT } e | - Z;—E(Tk+l - CTk) (198)
T

For bit synchronization the measurement vector is given by

cos (Sk(t,Tk))

2y = +V 199
k -sin (Sk(t,rk)) k ( )

and the measurement noise takes the form

a - cos(S

K+l (t, t

k+1 k+l))

=

-1

_ 1/2 1

P | T Siep) = [2” | R | ] €1-3
b + sin(S

k+1 (t, =

k+1 k+1))

(200)

A4y T o8 (S (6 T )

b + sin(S

k+1 (t, 7

k+1 k+l))

The desired output, the estimate of Sk+1’ is obtained from Equation (195) by
choosing the maximum of

i

P(s g ) =
Grar | Bip) fP(Tk+l’ St | Br)) T (201)
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The above formulation will yield near optimum Bayesian carrier and bit
synchronizétion. The only thing left is to determine the parameters of the
state equations, a, b, and c. These are obtained by specification of the
bandwidths of the processes described by the state equations. Given the

following form of the state equations

a¥ +W (202)

Y1 kT Y%

and taking the Z transform we obtain

z Y(z) = a Y(2) + W(z) - (203)

or

1

Y(z) = ) W(z) (204)

Then the power spectral density is given by

1 1 1 1 2
S, (z) = — —~ S. (z) = o (205)
Y (z o) (2 1 _ ) W (z - a) (z—l - ) W

2,
where oy 1is the sampled power spectral density. The mean square value of

Y is given as

2 1 dz
CYT(RT) = T st(z) = (206)

Making the change of variables z = :]i -i-W we obtain

W

2 .
1 2 dw 1 2o, dW

2 R - n
Y (kD) 2nijY(w)(l_w2) 21ij[1—a+(l+oc)W][l-a—(l+a)W]
(207)
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This is evaluated as

2
o
n

(1 -a)(1 + a) (208)

Y2 (kT) =

The maximum of SY(Z) is evaluated at z = 1 to yield

2
o
n
Sy(2) | max = Sy(z =1 =—— (209)
1 -0
and the bandwidth is obtained from
; 2
(BW) (SY(z =1))=Y (kT)
to be
BW = -2 (210)
1+ a
1l - BW
= 211
R Y (211)

4.2 Performance Evaluation

A computer simulation of the previously derived PSK synchronization
algorithms utilizing separate carrier and bit synchronization was performed
to determine probability of bit error. Since the conditional densities of
the phase and frequency offset in Equation (187) and of the bit edge in
Equation (195) are not calculatable in closed form, we compute the conditional
probabilities only for a finite set of phase, frequency offset, and the bit
edge values which in turn reduces the conditional densities to discrete
densities. We let the phase offset, frequency offset, and bit edge each

have 10 possible values. For these divisions of the state parameters the

carrier tracking conditional density of Equation (187) reduces to
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Py | g Oy ez & Phar O | £ 80 P 8y | 2
K T
p -
Frerr Opar | By vz | o)
—k+1 k (212)

where P(Z_k+l I Zk) is a normalizing constant given by the double summation
over fk+l and ek+l of the numerator. The summations over fk’ ek, fk+1’ and
ek+l consist of the 10 possible values of each of these parameters,
Also, for these values of the state parameters the bit tracking conditional

density of Equation (195) is

PZiyr | T Sa) ; Plrgp |70 POy Spyy |8
_ k
Pty Siqq | 24 < (213)
PZeyy | 2

and P(Zk+l [ Zk) is the summation over Tyl of the numerator. Using Equation (212)

involves knowledge of Tl and Sk+1 and using Equation (213) involves knowledge

of fk+l and 6k+1 as is shown in Figure 100. In the simulation bit synchronization

is physically done first, then the estimates T and S calculated and finally

~ ~ A

T and S are fed back for carrier synchronization. The estimates é and f are
then calculated and fed back for bit synchronization. Since these estimates
are updated with every sample, there is a one sample delay of the estimates é and
%. This introduces very little error becéuse the phase and frequency offset
change slowly with respect to the sampling time.

Since it is not known beforehand where the bit edge is, observation intervals,
each the length of a bit period, are formed. There are parts of two bits in

each observation interval! and four possible combinations, B(t,1), of these two

bits (0,0), (0,m), (m,0), or (m,m). Let
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P?+§(t,T) = Prob {B(t,T) = im for nT < t < aT + 1; B(t,1) = im
b

(214)
for nT + 1 < t j_(n+l)T} i,j = 0,1

be the joint probabilities of T and B in the (n+1)§£ observation interval,
then
n+l n+l
P, L{t) =
1,140 2 Pri®md) (215)
T
k
is the probability of the bit sequence (i, 7j) in this interval. The

estimate of the data bit at time tk+1’ Sk+1’ (for nT 5-tk+l < (nt1)T) that

is used for carrier synchronization is given by

n+l n+l 1
. 0 1f Py o(tuyn) + B 1(ty1y2 3
= (216)
k+l 7 otherwise
if bty = nT + 7 and
. n+1 n+1 1
. 0 1f By oltyy)) + By olty) 25
K+l (217)

T otherwise

if tk+l > nT + 1. At the end of each observation interval an estimate of the

bit is made. This estimate at the end of the (n+l)§£-interval is given by

0 1f P + P ((mT) >

~ 0,0(

S =
+1 218
(n+1)T T otherwise ( )

N =

since this expression contains all the observations of the (n+1)§£ bit.
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At the end of each observation interval the probabilities are

reinitialized as

p

n+1 n+l1 1 n n .
P = = =
O,O(HT’T) Po,l(nT,r) 2 PO,O(nT’T) + Pl,O(nT’T)]
(219)
n+l _ ,n+l _ l_’ n n
Pl,O(nT’T) = Pl,l(nT’T) =3 LPO’ (nT,t) + Pl,l(nT,Tﬂ

The estimate for T+l that is fed back for carrier synchronization is, from

Equation (213),

~

Tipp = maximum {P(Tk+1 | Zk+l)} = maximum :E: P(Tk+l’ S+l I zk+l) (220)

Sk+l

lThe estimates of fk+l and ek+l used for bit synchronization are obtained

jointly as, from Equation (212),

{%k+l’ ék+l} = maximum {P(fk+l’ 0111 I Zk+l)) (221)
In the simulation we let the phase offset vary from 0 to 2w, the
frequency offset from -1 to +1 Hz, and the bit timing from 0 to T, the bit
period. The variances and the bandwidths of the frequency and phase offsets
were set to obtain a fairly rapid acquisition time. For the frequency offset
and phase offset the variances were picked to be 0.04 sz and (0.02)x(2n)2

radians2 respectively and the bandwidths 0.001 Hz and (0.0025)x(27) radians
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respectively. The variance and bandwidth on the bit timing were set at
essentially zéro. The probability of bit error for these parameters is
given in Figure 101. A typical learning curve for the bit synchronization
is shown in Figure 102.

Although we have shown that this approach can be implemented at very
low bit rates, the small performance gains which were obtained do not
justify the difficulty involved in the implementation. Note that the
regular MDAC Digital PSK receiver operates within 0.5 dB of theoretical
for practical tracking bandwidths and thus the maximum possible performance

gain for the Bayesian approach is less than 0.5 dB.
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5. HARDWARE IMPLEMENTATION

One of the primary reasons for this study of digital signal processing
was to deVelop computer software that would enéble any NASA ground station with
vcomputer facilities to demodulate low data rate telemetry without the purchase
of any additional hardware. The use of digital signal processing for very
low data rates (i.e. less than 10 bits/second) was also of special interest
due to the difficulty of constructing very low bandwidth circﬁifs with analog
hardware.

Since digital signal processing also has considerable utility in
higher bandwidth applications, it was decided to investigate the upper
data rate capability of the MDAC digital PSK receiver. To significantly
increase data rate, it is necessary to use special purpose digital logic
rather than a general purpose computer.

A complete hardware design of the entire MDAC PSK feceiver was beyond the
scope of this study and not really necessary to determine the upper bit
rate capability. Thus we decided to concentrate our design effort on
the phase-tracking part of the receiver. The Costas loop, rather than the
bit synchronizer, was chosen for hardware design because it appeared to be
the more time consuming of the two calculations. Note that the phase and
bit tracking loops are essentially separate algorithms which can be performed
in parallei.

This section presents results of a study to determine the best hardware
realization of the digital Costas phase-locked loop depicted in block diagram
form in Figure 103,

Section 5.1 describes different machine organizations for the accomp-

lishment of the task. Section 5.2 is a detailed description of one of these
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methods. Section 5.3 describes additional effort required to complefe trade-—

off studies between the various methods.

5.1 Machine Organizations

The required computations can be accomplished using a single time shared
arithmetic logic unit (ALU). This unit is capable of addition and subtraction.
With one ALU multiplication is performed by a process of shift and add and re-
requires as many clocks as there are bits in the multiplier.

The computations may be performed in a shorter elapsed time if two arith-
metic logic units share the computation load and even faster with three arith-
metic logic units. However, no further increase in speed can be obtained by,
addition of a fourth ALU, because it would have to wait'for results from pre-
vious ALU's.

A further increase in speed can be obtained by speeding up the multiplica-
tion process through the use of look-up table multipliers which can function
in an add time. Such devices are now available.

Figure 104 lists these candidate machine organizations and their
operating speeds assuming Transistor-Transistor-Logic (TTL). These speeds are
the rate at which a pair of samples, x and y,» can be processed.

Note that with 20 samples/bit, we could go up to 100 K bits/sec using
12 bit accuracy for the calculations and look~up table multipliers. Section
3.2.1 shows that 12 bit accuracy does not cause significant performance degra-
dation.

The following section of this document describes tﬁe logic required for
the three ALU case and describes its operation.

5.2 Parallel, 3 Arithmetic Logic Unit (ALU) Design
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CANDIDATE SYSTEMS VERSUS SPEED

(TTL ALU’S)
24 BIT 12 BIT
SERIAL (1 ARITHMETIC UNIT) 100 KHz 170 KHz
SERIAL-PARALLEL (2 ARITHMETIC UNITS) 170 KHz 290 KHz
PARRALLEL (3 ARITHMETIC UNITS) 210 KHz 360 KHz
LOOK-UP TABLE MULTIPLIERS - 2000 KHz
TIME SLOT - OPERATIONS
SLOT ALUA ALU 8 ALUC
2 _ 2
000 Xn XY, = M Y,
2 2 _
001 XZ-Y, 2= N
010 N Sin 2X1 MCos 2X1
[i}H N sin 2X; + Mcos 2X) = L
100 LHKa HX2 LHK
101 HX2+ X = R
110 R+ LHK= X;
111 X2i +LHKa = X2i+1
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5.2.1 General Description

Eight (8) time slots are used to complete one iteration of computations
(Reference Figure 103) using the parallel (3 ALU) processor design. Figure
105 identifies the computations performed in each time slot. Two clocks are
required for an additiom or subtraction operation. The number of clocks re-
The

quired for each multiplication is 2 times the length of the multiplier.

following lists the number of clocks required during each slot:

SLOT NUMBER OF CLOCKS
000 22
001 , 2
010 22 or 28%
011 2
100 22
101 2
110 2
111 2
Total 76 or 82

* 22 clocks using ROM Method A and 28 clocks
using ROM Method B.
The maximum clock rate is limited by the time required to perform an

addition. Addition time varies with word length and adder configuration.

For the configuration used in this design; the typical addition time is 36 ns.
with maximum value of 48 ns. If the word lengths to be added were increased
to 24 bits; this addition time increases to typically 60 ns. If the clock

périod is chosen as 36 ns; thén the time required tg process one pair of

samples, X and Y is 36 ns/clock x 76 clocks = 2736 ns using ROM Method A.

These conditions correspond to 360 K Hz operating speed. Using ROM Method B;
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a clock period of 60 ns or greater is required to allow 600 ns for accessing
the ROM during slots 111 and 000. Using ROM Method B, the time required to
process is 4920 ns.

Through this design the following word lengths were selected.

WORD LENGTH
Xn 11 + sign
Yn 11 + sign
HKa 11
HK 11
H 5

All computed quantities will be rounded off to 11 bits plus sign.

5.2.2 Functional Block Diagram

Major functional entities and their interconnections are identified in

Figure 106. A brief functional description of each of these blocks follows:

Operation Sequences and Clock

The logic circuitry required to time order operations is contained
within this block. An eight (8) counter and gating to decode each state
provides the slot timing signals. The clock oscillator provides the signals
for advancing the eight (8) counter when the required feedback signal indi-
cates operations within a given state are complete. The clock output is
also used to generate the @A, QB, and M signal required to sequence each

arithmetic operation.

Arithmetic Logic Units (ALU's)

The logic required to perform multiplications, additions, and subtractions
is contained within these blocks. ALU's A and C perform multiplications only
whereas ALU B must multiply, add, or accomplish two (2) types of subtraction.

Each ALU uses 3 74181, 4 bit arithmetic logic unit/function generators
connected together and with a 74182, Look Ahead Carry Generator to form a 12
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bit arithmetic unit capable of performing additions or subtractions in 36 ns.
Associated with these arithmetic units are the following registers:

A Register - Stores and inputs the augend or multiplicand to the arith-
metic unit. This is a 12 bit latch type register.

B Register - Stores the multiplier. This is a 12 bit parallel in
parallel out shift register.

Accumulator - Stores and inputs the addend or partial products to the
arithmetic units. Also used to store the arithmetic unit
output. This is a 12 bit parallel in, parallel out shift
register.

D Register - Stores the number of operations required during multipli-
cation. This is a 4 bit down counter.

In addition to these registers, gating lcgic is required to input from
multiple sources. Both 4 line to 1 line and 2 line to 1 line data selectors
are used. Wherever data must be complemented prior to loading (ALU B only);
4 bit True/Complement logic elements are used. The function of all other
logic elements is given by their logic symbols.

Read Only Memory (ROM)

Value of the sine and cosine of the angles stored in the X1 Register are
stored in ROM's. Two methods of obtaining these values have been devised.

Method A stores 128 values of the sine and cosine in the 0 to 90°
quadrant. Each value contains 8 bits plus sign. Two ROM's are used; one for
storing sine values and the other containing the cosine values. Addressing
is accomplished by connecting the X1 register outputs, X18 through Xl23 to
the ROM's via 4 bit True/Complement elemenfs. The Xllo and Xl9 register
outputs which represent the 180° and 90° bits respectively (actually the 90°

and 45° bits, since the times 2 multiplication has been accomplished by
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shifting each bit one place to left) are used to select whether the true or
complement of the input number is used in the addressing and to select the
sign bit of the output word. It should be noted that the complemented
address is less than the actual angle by the value of the LSB which in this
case is 0.7°.

Method B uses a single storage element (made up of 4 ROM's) and can
store up to 2048 values of the sine in the first quadrant. Only 512 values
are accessible due to input word limitations. The output word using this
method has 12 bit accuracy + 1 - 5/8 bits, however, only the 11 most signi-
ficant bits are used along with a sign bit. This method breaks up the sine
of the angle, A into two parts. Addressing is accomplished in the same
manner as Method A. Use of 3, 4 bit address in the input eliminates the 1
bit address error when complement addresses are required. Since simultaneous
addressing to obtain both the sine and cosine values is not possible; this
method uses a 12 bit latch to store the sine value while the cosine value is

accessed.

Storage Registers

The following registers are used solely for storage:

Xn and Yn - 12 bit latches used to store the input words. Data is
strobed into this register by external control.

Xl and X2 - 12 bit latches used to store the output words. Data is
strobed into these registers by control signals generated
within the Operation Sequences.

Switching Bits

A total of 27 single-pole, single-throw switches are used to set in
desired values of HK, HKa, and H. One throw of each switch is connected to

+V for inputting a "1" and the other to grd. for a "0".
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5.2.3 Logic Diagrams

Operation Sequencer and Clock (Reference Figure 107)

Initial turn-on of power clears flip-flops 1A, 1B, and 2A. Gate 3A
decodes this 000 state and outputs for use by ALU's as well as enabling the
8A gate. Internally, OR gate 6A is enabled, and it in turn enables gates 7A,
/B, and 7C. Since the initial state of flip-flop 2B is cleared (Q is high),
the M output will be high until a §B output from flip-flop 3A via gate 7A
changes flip flop 2B's state. This action allows the @B output to be gated
through 7D. The @A output is outputted at all times. These 3 outputs, fPA,
PB, and M provide the primary gating signals necessary for sequencing of
operations by ALU's A, B, and C.

Following completion of operations in slot 000; the D register of all
three ALU's will be decremented to the 000 state. This state is decoded and
brought back to the 5C gate. The output of the 5C gate then enables the 8A
gate which, via IR gates 1l1A and 6C, enables gate 10B. Gate 10B then passes
the clock pulse to flip-flop 1A causing the 8 bit counter to change to the
001 state. This state is decoded by the 3B gate which outputs the signal for
use by the ALU's and enables the 8B gate. Note that the change of slot from
000 to 001 results in the A/S output going high (simultaneously the Mult.
goes low). This, along with the #B signal which is still high, connects the
appropriate inputs to the arithmetic unit. The next fB signal then strobes
the adder output into the ALU B unit accumulator and enables gate 8B which
enables gates 10B via gates 11A and 6C. Gate 10B passes the clock on to
flip-flop 1A which changes state and the counter state becomes 010. This
state is decoded by gate 3C, and a sequence identical to that described for
slot 000 is underway. All other operations are identical to those described

for slots 000 or 001.
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Timing diagrams showing the relationship of Operation Sequences Outputs

are detailed in Figure (108).

Arithmetic Logic Units A and C (Reference Figure 109)

ALU A and ALU C are used to multiply. During this operation, the
arithmetic unit, 6A, 7A, 8A, and 9A performs addition only; therefore the
control inputs to the 74181's, 6A, 7A, and 8A are hardwired to the A plus B
mode. The outputs of the A Register (4A and 5A) and the Accumulator (10A and
11A) are permanently connected to the 74181 inputs. The output of the 74181
which is the sum of the inputs is strobed into the Accumulator as required by
the multiply routine. The operations in the muitiply routine are as follows.:

M input - Loads MultiplicandAinto A Register

Loads Multiplier into B Register
Loads Multiplier length into D Register
Clears the Accumulator

PA Input - If LSB of B = 1, strobes the Adder output into

the Accumulator.

@B Input - Shifts the contents of Ac aﬁd B register on bit

to right. Decreﬁents D Register.

When the M input from the Operation Sequence goes high, the clocks to 5A

and 4A are gated high via gate 21A. This results in the loading of the data
into these latches. The data will be that stored in the Accumulator or ALU B
except during time slot 000G. Data Selectors, 1A, 2A, and 3A route the selected
data to the latches. 1In addition, the M signal loads the data selected by

data selectors 13A, 1l4A, 15A,v16A, 17A, and 18A into the B register (19A and
204) ; clears the Accumulator (10A and 11A); and loads D0 through D4 into the

D register (12A).
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The PA input produces an add st. signal out of gate 25A provided that
the LSB of the multiplier stored in the B register (19A and 20A) is a logic
one. This add st., via gates 21C and 22B,clocks the sum of the numbers
previously stored in the A register and Accumulator (initially all zeros)
into the Accumulator.

When the QA input goes low, the @B input goes high. This input decre-
ments the D register and raises the SO input to the Accumulator (10A and
11A) and the B register (19A and 20A). With So nnd Sl to these shift
registors at the logic one level, the clock input via gates 21B, 22B, and
22C shifts the contents one place towards QA.

The @A and @B operations continue until the D register is decremented
to 0. This state is detected by gate 26A and‘the output is fed back to the
Operation Sequences. In addition; the D register values of 7 or less is
detected and output as Sin and Cos for use in addressing the Method B ROM.
The correct sign for the proauct stored in the Accumulator (10A and 11A) is
decoded by Ex=0OR gate 24A and gate 23A during the time M input is high. Thié
value is stored in the flip-flop 27A until the D=0 signal goes high. The
D=0 signal enables gate 23A which strobes the proper sign into the Accumulator
sign bit.

Arithmetic Logic Unit R (Reference Figure 110)

The operation of ALU B is more complex than that of ALU's A and C due
to the requirement that the arithmetic unit (3A, 4A, 5A, and 6A) perform
additions, suBtractions, and comparisons as well as multiplication operations.
The outputs of the A register (1A and 2A) and Accumulator (7A and 8A) are
hardwired to the arithmetic unit inpﬁts. The arithmetic unit outputs are
connected to the Accumulator inputs via True/Complement logic (15A, 16A and

17A) and Data Selectors (13A, 14A and 18A). The Data Selectors allow the
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DIGITAL RECEIVER STUDY ' MDC E0648
AND IMPLEMENTATION 1 JUNE 1972

Accumulator to be loaded from the arithmetic unit for all operations and
also to be loaded from the Accumulator of ALU A for operations during slots
001, 011, and 111. Selection of the arithmetic unit outputs as inputs to
the Accumulator is the function of gates 23C and 25C. Gate 23A selects the
shift mode for the Accumulator. This mode is required whenever PB and a
Multi signal occur simulténeously. A clock signal is gated to the clock
input of the Accumulator via gates 23B and 24B to produce the shift. Clocks
are also supplied to the Accumulator via gates 26B and 24B to load the
Accumulator with data from the arithmetic unit during multiply operations
when the add st. is high. During other arithmetic operations, @A loads data
into the Accumulator via gates 26C and 24B. Gate 27B inhibits data loading
from any source during slots 10l and 110. This is necessary since the addend
is already in the chumulator during this éddition‘as a result of being
stored there during the previous slot. During arithmetic operations other
than multiply, @B is used to load the data into the A Register and Accumulator
for input to the arithmetic unit.

Control of the arithmetic unit is accomplished by the So, Sl’ SZ’ S3,

and Cn inputs. The following table describes this control:

3 2 1 0 n Operation
0 1 1 0 1 A minus B
1 0 0] l‘ 0 A plus B
0 1 1 0 0 A minus B minus 1

During the multiplication operation, the A plus B code must be selected.
True/Complementer logic (12A) and gates 39A, 39B, 34C, and 39D provide this
code. The outputs of 12A (Y1, Y2, Y3, and Y4) are all ones when there is a

logic one on the B input and a logic zero on the A input. This is the case
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when multiplication slots are decoded by the Operation Sequencer. These
inputs to gates 39A, 39B, 39C, and 39D and the logic zero level on the AlS
input provide the proper code for addition.

During other operations, the setup of these signals is controlled by
the sign bits stored in the A register (2A) and the Accumulator (8A). When
signs are alike, the output of Exclusive OR gate 28B will be a logic zero and
the A plus B code will be set up by 12A, gates 39A, 39B, 39C, 39D, 20B and
20A. Gates 25B, 21D, 24A, and 21B provide the proper sign bit into the
Accumulator. With unlike signs, the output of 28B is a logic one. True/
Complementer (12A) outputs logic zeros for 33 and S0 and logic ones for S,
and Sl. Gate 20A outputs a logic one for Cn if the Cn+4 output of 5A is
a logic zero. The arithmetic unit Cn+4 is a logic zero when the A register
input is larger than the Accumulator input. As a result the arithmetic unit
performs the A minus B operation, and the True of the result is loaded into
the Accumulator via 15A, 16A, and 17A. Gate 20C enables the sign of A for
the sign bit of the Accumulator. If the opposite is true, the Cn input will
be a logic zero and the arithmetic unit performs the A minus B minus 1
operation, and the complement of the results is loaded into the Accumulator.
Gate 21A via gates 24A, 21D, and 25B loads the sign of Accumulator into the
Accumulator.

Exclusive OR gate 28A and gates 26A, 27C, and.ZSB, and flip-flop 40A pro-
vide the proper sign for the Accumulator following completion of multiplica-
tion operatioms.

Inputs to the A Register via data selectors, 32A, 33A, 34A, 35A, 364,

and 37A. The following code is given for the inputs:

212

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY =~ EAST



-

DIGITAL RECEIVER STUDY MDC E0648

AND IMPLEMENTATION ' : - 1 JUNE 1972
Slot A B Input
000/010 0 0 X
100/101/111 1 0 AC of ALU C
001/011/101/110 0 1 X,

Gates 24C and 38A set up the required selection codes A and B.

Operation of the B register (9A and lOA) and D Register (11lA) is ident-
ical to that of the register described for ALU's A and C. Data selectors
19A, 41A and 42A are required to select the proper data fbr'loading into the
B register.

Gates 22B, 22C, and 22D inhibit the ¢A, ¢B and M inputs to ALU B dﬁring
slot 010. This is fequired'to inhibit operations since the ALU is not oper-
ated during this time slot.

Sine - Cosine Read Only Memory

The sine and cosine of two times the angle étored in the X1 output are
stored in Read Only Memories (ROM's). Standard ROM's stpriné the sine and
cosine are available. These ROM's store values for angles in the lst quad-
rant (0 to m/4). Addressing the ROM is accomplished by hardwiring the X1
register outputs to ROM inputs. The multiplication by two is accomplished by
shifting the wiring one place to léft (i.e., XlO is wired to ROM, 7 input

position instead of w/2). Two methods of providing the sine and cosine of the

Xl angles are described in the following:

Method A (Reference Figure 111): -Two 128 word, 8 bit ROM's (1A and cosine
counterpart) are used. The X 10 and X o inputs, representing the 7 and w/2
bits, are connected to gates 5A, 5B, 5C, and 5D. These gates along with OR

gates 4A, 4B, 4C, and 4D and True/Complementers 2A and 3A select the True/
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Complement of the input angle and decode the output sign bit according to the

following:
Input Output Sign
Xl10 Xl9 Quadrant Sine Cosine Sine . Cosine
0 0 1st True Complement 0 0
0 1 2nd Complement True 0 1
1 0 3rd True Complement 1 1
1 1 4th Complement True 1 0

Method B (Reference Figure 112) - This method uses 4 ROM's to store 2048 values

of the sine in the lst quadrant. Each value is output as a 12 bit word. The
Xl register which stores the values of the angles has only 12 bits. One bit
is lost in the multiplication by two and two bits are requifed to identify the
quadrant. Hence, only 512 values are accessible. Also, the output word reso-
lution is reduced to 10 bits due to B register length limitations. Selecting
the correct address for each quadrant for both the sine and cosine is accom-—
plished by gates 18A, 18B, 18C, 18D, 19A, 19B, 19C, 19D, and 20A. When this
selection produces an input angle that required complementing (such as sine

of 120°) to obtain the proper address; exclusive OR gates, 12A, 13B, 13c, 13n,
14A, 14B, 14C, 14D, 15A, 15B, 15C and adders 5A, 6A, and 7A output the required
address. Similarly, adders 8A, 9A, and 10A sum the ROM outputs to produce the
12 bit output. Latches 11A and 12A store the sine value since simultaneous
addressing of sine and cosines is not possible when only the sine of an

angle is sgored. Gates 2A, 12B, and 20B output the correct sign hit. Level
converters 164, 16B, 16C, 16D, 16E, 16F, 17A, 17B, 17C, 17D and 17F are
required to interface the TTL address'SA, 6A, and 7A with the M0OS ROM's.

Input-Output Registers (Reference Figure 113)

Latches are used to store the Xn (1A and 2A) inputs and the Yn (3A and 4A)
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inputs. Data is clocked into these latches whenever the respective external
clock goes high.

The output registers also use latches for storage. These registers both
receive.inputs from the Accumulator of ALU B. Gates 9A and 9B are used to
enable input clocks during the appropriate time slot.

Parts List

Total Parts Count (exclusive of ROM's)

74181
74182
74198
74194
74100
7477
2 74153
74193
7473
74HB7
9322
7408
7410
7420
7432
7427
7425
7486
7404
7 SPST Switches

Total Parts (Method A ROM) Total Parts (Method B ROM)

SK003

7483

74100

7477

7408

7425

7486

7404

8812

-3K Resistors
Diodes

5.1K Resistor

MM522BM
MM522BY

74187

7408

7432

7404

8812

8800

3K Resistors
6.8K Resistors

O NWWHHR N~NH

FHRPNNEWRWHER G
o
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5.2.4 Cost Estimate

MDC E0648
1 JUNE 1972

This design uses 134 or 141 integrated circuits (depending upon the type

of ROM used). Packaging and other aspects of the mechanical design of the

processor such as thermal considerations have not been completed due to lack

of time, however it's estimated that 3 circuit cards will be required. Based

on these quantities, the following estimate of cost to produce the processor

is given:
Integrated Circuits
Switches
Printed Circuit Costs
Connectors

Labor for Assembly
(180 hrs. at $22/hr)

Labor for Test and Checkout
(120 hrs. at $22/hr)

Labor for Design Completion
(40 hrs. at $22/hr)

5.3 Future Effort

$520
$30
$390

$15

$3,960

$2,640

$880

$8,335

The design described in Section 5.2 utilizes one of many methods possible.

In addition, it is recommended for follow on work that the following designs

be completed in the same manner to provide meaningful speed and accuracy vs.

cost trade-off data:
a) Serial Processor

b) Serial-parallel processor

¢) Maximum speed processor using Look-up Table Multipliers.
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APPENDIX I - ANDERSON, BALL, VOSS METHOD

This appendix develops a set of difference equations which simulate a second order

analog filter using the Anderson, Ball, Voss method. Let F(s) be defined as
in Fquation (T 1).

- 8(s) _Ks+ aK ' I1
F(s) e(s) &2 @b

The differential equation of the loop will have the form given in Eouation (I 2).

6 = K& + aKe . (I 2)

20
Following the method developed by Anderson, Ball, and Voss

we assume that the output of the filter is known up to time tn’ and

approximate both the solution of Equation (I 2) and the input signal in the time

interval from tn to (tn + h). It is then possible to solve for the coefficients

of the polynomial series for 6(t) and determine the output at time (tn + h). The

input signal is approximated by the polynomial in t given in Equation (I 3).

2
e = 131 t+ B, (t—tn) + B3 (t—tn) (I 3)

The coefficients of Equation (I 3) can then be determined as a function of the
past, present and future samples of the input signal, e.

The results are given

in Equations (I 4 - I 6).

B = e (1 4)
1
By =5n (eny1 ~epp) (1 5)
.1 _
By =) (e 4y ~2e +e ) (1 6)
2h
I-1
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The solution to gEquation (I 2) is approximated by its transient response plus a
polynomial in t. Since the transient response of Equation (I 2) 1s also a

polynomial in t, the solution will have the form given in Equation (I 7).

2 3
6 = A+ A2 (t—tn) + A3 (t-tn) + A4 (t—tn)

l .
(r7n
+ A_ (t-t )4
5 n
Equations (I 3) and (I 7) are now substituted into Equation (I 2).
2
2A3 + 6A4 (t—tn) + 12A5 (t—tn) = K [BZ + 2B3 (t-tn)]
(1 8)

2
+ aK [Bl + B2 (t—tn) + B3 (t-tn) }

By equating like coefficients, solutions for A3, AA’ and A5 can be determined.

Ay =(/2)KB, +(1/2)aKB, (19)
A, =(1/3)1<B3 f(1/6)aKBz (I 10)
Ag =(1/12)a1<B3 (I 11)

Al and A2 are determined by letting t = t and t = t -1 in Equation (I 7).

n (I 12)

2 3 4
[— 81 * 8, + AjhT - AhT + A ] (1 13)

S~ @

I-2
MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EASYT



MDC E0648

DIGITAL RECEIVER STUDY
1 JUNE 1972

AND IMPLEMENT ATION

The final difference equation can be determined by letting t = tn+l and
substituting the results from Equations (I 4 - I 6), (I 9 - I 11), (I 12)

and (I 13) in Equation (I 7). The difference equation is given in Equation

(I 14).
= - - . 2
® n+l 26 n ® n-1 M Kh (en+1 en—l)/z + akhteq
(I 14)
2

+ akKh® (e ,, - 2ep + ep_1)/12

Since ¢ nt+l del:?ends on e . ,» a unit delay must be added in the feedback path.

The resulting values for e 11’ ey and e are given in Equations (1 15 - I 17).

= Y - . .
€+l e (1 15)
=Y 6 - in 6
®n n %% “n-1 Xn R, | (I 16)
= Y [¢] - s
en—l -1 cos n-2 Xn—l sin en—2 (1 17)
I-3
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APPENDIX II - EQUATIONS FOR LINEAR FILTERS

This appendix develops difference equations which simulate the analog filters
specified in Equations (II 1) and (II 2). Five numerical methods were examined on
the basis of their expected performance and speed.

(1) Runge - Kutta Method

The transfer function of the linear filter Hl(s) is given in Equation (I1 ).

2

w
Ry =08 . S (11 1)
S™ + Z;wos +w o

The differential equation can then be written from the above transfer function

é+2Cwé+w26=w2E (I1 2)
o o )

Using results from Scarboroughl"ﬁhe numerical solution is determined.

F(‘e, S,E) = _choh.e +u) ozh (E“e) (II 3)
A T F(en—Z’ ®n-2° En—Z)
A2 = F(en_2 + .SAl, en_2>+ .Shen_h2 + .lZShAl, En—l)
Ay =F(§ _, + .5A,, 6 o+ .Shd , + .125hA;, E )
A, = F(Bn_2 + Ay, 8 _, tho _, + .5hAg, E)
A = 4
6, = 6 _, " (Al + 24, + 24, 4+ Aa)/é.
8, = 6, 5 + hen—z + h(Al + A2 + A3)/6.
The transfer functibn for HZ(S) is given in Equation (II 4).
2 s + 2
Ho(sy = B8) | TP° T % (11 4)
2 E(s) 2
s

2
+
22;(008 + w,

II-1
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A corresponding differential Eduation (IT 5) can be written. To avoid taking the

derivative of the input signal, this equation is converted into two first order

Equations (II 6) and (II 7) using the dummy variable C.

. . 2 . 2

8 +2C%9+ W, =2¢;on+wo E (II 5)
2

g% = uw, (E-6) (11 6)

de _ -

dt c+ szo(E 8) (11 7)

Using results from Scarborough 1 for the solution of first order simultaneous

differential equations, the iifference Equation (II 8) was formulated.

F(8,E) = 2tw h(E-6) (11 8)
Gl B F(811—2’ En—Z) |

Ap =hC__, + G

B, = (wo/2c)c1

G, = F(6__, + Al/2 E )

Ay =h(C__, +Bl/2) + ¢,

B, = (w0/2c) G,

Gy = F(6__, + 42/2, E

Ay = h(C__, + B2/2) + G,

By = (g/20) Gy

G, =F(B _,+Ay, E)

A, =h(8 _, +B) +G,

B4 = (wo/ZC) G4

Cp = Cppt (B + 28, + 2B, + B,) /6.

O =0t (A + 24, + 28, +A,) /6.
I1-2
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(2) Euler's Method

Euler's method for the solution of a nth order differential equation
consists of first reducing the equation to n first order simultaneous differential
equations and then solving the n equations using rectangular integration.

Equation (II 2) can be converted into two first order equations by defining the

state variable 6 and 6.

Do

[@%d

2 :
= 2CwoC + W (E-6) (11 1¢)

The difference equations for the implementation of Euler's Method can be deter-

mined from the above equations and are given in Equations (II 11) and (II 12).

. - e , .
Q= 8 th6 (II 11)

2

D
il

n B [_choen—l + “o (En—l + 6n-l):l + en—l (11 12)

The difference equations for filter Hz(s) can be determined from Equations (II 6)

and (II 7).
F=20wh (_ -6 ) (11 13)
= +
8, =6 _,*+hC  +F
C,o=Coq+ (w/20) F

I1-3
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(3) Anderson, Ball, Voss Method

We will now determine the difference equation for filter Hl(s), using the
Anderson, Ball, Voss method. We assume that the filter output is known up to
time tn and approximate both the solution to the equation and the input signal
in the time interval from t, to (tn + h). As was done in Appendix I, the input

signal was assumed to have the form shown in Equation(II 14).

E =K + K, (t—tn) + Ky (t-t:n) (II 14)

The coefficients of this equation can be evaluated as a function of the past,

present, and future samples of the input signal, E,

K, = E (I1 15)
1 n :
1
K2 =20 Epp ~ B p) (1L 16)
1
Ky =27 Fpq ~ 2, F ) (11 17)

The solution to the differential equation of the filter is approximated between

time tn and tn + h by the sum of its transient response and a polynomial in t.

-zw (t~-t )
8 = Ae ° n cos W l—cz(t-tn) (I1 18)

-t_:wo(t-tn)

2
+ - -— -
Be sin W 1-77 (¢ tn) +C, + C2 (t tn)

1
2
+ C3 (t-—tn)

Equations (II 18) and (II 14) are now substituted into the filter equation (II 2).
After equating like coefficients, the results given in Equations (II 19 - II 21) are

obtained.

I1-4
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C o : - (I1 19)
€y =X -

= _ (11 20)
C2 K2 4t 1(3/u)o
2 2
= - / - (II 21)
Cl Kl 2(c,wo) K2 + K3 (8 ¢ 2) /wo
The coefficients A and B are determined be letting t = tn and t = tn—l in
Equation (II 18).
A=6 -¢ (II 22)
1 1 ’ —cwoh -Qmoh ’
B = [(en - Cl) cos woh +Cle - CZhe
, ~Eu_h ~tw_h : (1T 23)
- i h
+ C3h e n-1 © /sin W,
2
w = w 1-¢ (1T 24)

The resulting difference equation for the loop is given in Equation (II 25).

-zw h

2
9 = ° -
n+l Ae cos wo 1-z" h
_Cwoh 2 .
+ Be sin wo 1-z7 h + C1 + C2h (11 25)
2
+ C3h

The difference equation for HZ(S) can also be determined by using the general
formula for a second order filter given by Anderson, Ball, and Vosszo. The

recults for HZ(S) are given in Equatioms (II 26 - II 32).

I1-5
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A= 2e_§woh cos (u h ’1—g2) (11 26)
B = —e_zc%h (1T 27)
C = -1/u2 h? (11 28)
D = (1-A-B) C + (1+B)/2 + (1-B)/2 (1T 29)
F = (1-A-B) (1+2C) - (1-B) (11 30)
C = (1-A-B) C - .5 (I1+B) + .5 (1-B) (T1 31)
8 SDE, *FE ;| +GE_, +AQ  + BO (11 32)

(4) Z - Transform

In order to determine the difference equation using the Z - transform technique,

the Z - transform of the transfer function must be determined. However, in order

to get meaningful results, a hold circuit must be placed before the filter. A

zero order hold was used in order to simplify the implementation, The Z - transform

can then be determined as shown in Equations (II 33 -~ II 39).

253 =Z (l—: ) ( ‘o ) (11 33)

s + Zgwos + w
o L2 1
8(z -1 0
= (1-z ") z
E(2) s(s2 + 2w s + w Z)J (1136
o o
6(z) _ #2(1-B-DA) + C-B+DA (11 35)
E(2) 2
z - 2Bz + C

_ ~tw h “ 2
A=¢ o sin moh 1-¢ (11 36)

I1-6
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_ _~Ctw h 2
B =e o cos woh 1-z » (I1 37)
C = e 20950 (11 38)

The difference equation for the filter ig given in Equation (TI 40).

8 _ = 2B6 - Co6 + (1-B-DA) E
n n n

-1 n-2 -1

(I1 40)

+ (C-B+DA) E__,

The difference equation using the Z - transform method for Hz(s) can be derived in

a similar manner.

20w s + w 2
o 0

ggz; - (-2 2 2 2 (1t b
s(s™ + ZCwos + ) )
- h
A=e (1T 42)
= | .
B=1c¢/Y1l~-¢ (IT 43)
C = cos woh l—cz (IT 44)
, 2
D = sin woh 1-z (11 45)
_ 2
8, = (1-AC + BAD) E__, + (A" - AC - BAD) E__, (II 46)
+ (2AC) o - A28
n-1 n-2
I1-7
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(5) Tustin's Method

Tustin's method requires that the filter transfer function Hl(s) be written in

terms of (1/s) as shown in Equations (II 47) and (II 48).

N 2

s _ ° (11 47)
E 2 2

s + 2w s +w

o) )
2 2

2cwo W, W, (11 48)

6(1 + s + 8—2—) = (';2—) E

The difference equation for Hl('s) is determined by substituting the operator

-1
h(l+z )
Ei(-m)for (1/s).
-1 22, 1.2
Zi;woh(l+z ) w, h™(1+z ) (IT 49)
6|1+ =) + =) y4
2(1-z 7) 4(1-z )
2
w 2h2(1+z_1)
0
= E
-1 2
4(l-z )

0 [(1—2z'l t27) w2+ o tn? el e z‘2>/4] (11 50)

= wozhz E (1+ 2271 4 z-z)/4

This result can then be converted into the difference Equation (II 52).

2
K=1+uw h/4 + Zw h (11 51)

I1-8
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' 1 2 - 2 59
= = 2 - -1 - ) (IT 52)
8 X [(4 W, h/2) en—l + (cmoh 1 w, h/4) -2

+w h (B +2E | + En_z)/4]

Similar methods can be used to generate the difference equation for Hz(s).

The result is given in Equation (11 54).

K = 4+ 4coh + w02h2 (1T 5

[f4Cw h + w 2h2) E + 2w 2h2 E
‘ o o n o n

<D
I
==

-1

(IT 54)
2.2 2.2
+‘(LuO h™ - Agwoh) En—2 - (Zwo h™ -8) en-l

2
- (4 - 4Cwoh + W, h) en-Z}

I1-9
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APPENDIX III - BIT SYNCHRONIZATION ERROR

This appendix presents an analysis of our digital bit synchronization technique
and provides expressions for the output timing jitter as a function of signal-to-
noise ratio and tracking bandwidth. The technique employed to determine bit
synchronization error is similar to that used by Layland17- A block diagram of

the bit synchronization model is shown in Figure III-1.

" BIT SYNCHRONIZATION MODEL

+ R, E, Cn
Xp = —(1-D) »  F@2)
2
1 1
Yo =% (140 0D
D

FIGURE ili-1

In the above diagram the variable Dn has the value -1 if a bit transition has
occurred and has the value +1 if no transition has occurred. For this analysis the
two states are assumed to be equally probable, and it is also assumed that there

is no correlation between adjacent samples. The above figure also indicates that

X is the input signal when a transition occurs, and that Yn is the input signal
when no transition occurs. In this analysié we are assuming that the bit synchro-
nization loop is second order. The loop filter F(z) is determined as shown in

Equations (III 1) and (III 2).

K s+a)\] (111 1)

F(Z) = 2z [(1—e'5T> :

ITI-1
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Az + B
F =
(z) - (11T 2)
_ 2 -2z +1
A = KT + .5aKT2
2

B = .5 aKT® - KT

The difference Equation (III 3) relates Cn to E .
n

C, =20,y ~Ch,tAE , +BE , (111 3)

Using this result, the difference equation relating the inputs and outputs of

the bit synchronizer can be determined. The result is given in Equation (III 4)}.

C, = [ 2+ .5A00__ - 1)] Cop *+ [.SB(Dn_z-l) - 1] c__,

+ .5A (1-D__ 1) X__ (III 4)

+ .54 (1+D__ )Y

n-1

2) Yn—2

1 1

X + .5B(1 + D
n—

+.5B(L-D )X _,

We next square both sides of Equation (III 4) and take the expected value. In

order to simplify the results the assumptions given in Equations (III 5 - III 7).

DZ = 1

n (III 5)
D = 0 (III 6)
DnDn_l = 0 (III 7)

After applying the above operations to Equation (III 4), Equation (III 8)

results.
(-4 + 2A - .SA2 - .532 - B) C2 = (A-4) ChC
’ “n n*p-1
+ (2B - .5AB) ( Can_l (l—Dn_l) + CnYn_l(l + Dn—l)
+ Cncn-l(Dn-l - 1) ) + (2A - B) CnYn (II; 8)
(2A - B2 - B2 - B) CX + .S(Az + Bz) X 2 + Y 2)
nn n n
.SAB(Xan_l + YnYn-l) + AB XnYn—l
IT1-2
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This equation can be further simplified by using Equation (IIT 4) to solve for
the first five terms on the right side of Equation (III 5)., This is accomplished
by multiplying both sides of Equation (III 4) by the appropriate quantity and

averaging. The results are given in Fquations (III 9 - III 14).

Cnlne1@por™1) o [ (3a-4) ¢ % - 3a c x
n nn
TyY - _ g3
+ACY -B cnxn_l(l Dn_l) (111
-BCY ,@+D 1) J / (B+4)
—_— - _ _ —_
cncn_l [(4 A+ .5 AB) cn2 + (A - .5AB) C X,
+ (A + .5AB) cy + B cnxn_l(l - Dn_l) (111 10)
+BCyY ,(1+D ) J [ (B+4)
CoXp = 34 (XX 4 XY ) (IIT 11)
Calq = 94 (Ynxn-l + YnYn—l) (111 12)
CX (L-D .) = (A- 5A2 + .5B) (XX, 1 +XY .)+AX 2 (II1 17
n''n-1 n-1 : : n'n-1 n n-1 n
—_— 2 N
= T ! /}.:
Y _,+D ) A+ .58) (Y Y .+ XY ) +AY, (TIT 34,

The above equatio'ns are then substituted into Equation (III 8). The result is

given in Equations (III 15 - III 20).

2 [ 2 2
K2(Xn + Y,

(@]
]

)+ Ky Y ¥, +K, XX

—— (I1I i5;
+ Kg ann-l ] / Kl

II1-3
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kR, = -A% - 387 - 4aB + .5a%B - .58 | (111 16)
Ry = 2a% + 2B° + 4AB - .54%B + .5B° (111 17)
Ky = 28° + 282 + 4aB - .5aB% + .5A° (111 18)
K, = 247 + 2B + 4AB - 4sa%8 - 2.5a82 - 1.54% - .5a8% + .5a%8 (111 19)
Kg = 4A% + 482 + 8AB - 3aB% - 4a%8 - A% + .5A%B - .5aB> (111 20)

In order to determine the bit jitter variance, the various cross products on the
right side of Equation (III 15) must be evaluated. Once the cross products are

evaluated Equation (III 15) provides an expression for tracking performance of ‘the

bit synchronization loop.

Figure III-2 will aid in evaluating the cross products.

BIT SYNCHRONIZATION INTEGRALS

VB,_1

b ]

FIGURE Ili-2
The error signal is determined by integrating over the limits indicated above,
and then evaluating Equation (III 21).
E = (Il + 12)2 - (12 + 13)2 (I1I 21)
If Ban—l =-1, the error signal will have the form given in Equation (III 22). The
random variables Ny, 0y, and n, are uncorrelated, have a mea: value of zero, and

, 1.2
a variance of -2—0 .

III-4
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Xn = [ (.5V + n; + n2)2 - (- .5V + n, + n3)2 ] / 4V2 (111 22)

S,

If both sides of Equation (III 22) are squared and averaged,

Equations (III 23 - III 24) are obtained.

. 2

' (111 23)
X," = v + 3% /16 v
— . 4
x© = (65 +3) / 645’ (ITT 24)
S = V2/202
2
If BB,y = 1, the value of Yn can be derived in a similar manner.
2 2 (111 25)
Y," = (85 + 3) / 64s

The cross product terms can be determined in a similar manner. If Bn =1,

Bn—l = -1, and Bn—2
Equations (III 26 - III 27).

The random variables ny, 0y, Ng, N, and ng are uncorrelated, have a mean value of

= 1, the value of ann—l can be determined as shown in

. 1
zero,and a variance of EO

_ 2 Z 2
. Xan_l : = [(.SV + ny +,n2) —.(.SV + ny + n3) (-.5V + ny + nA)
-(.5V + n, + n5)2 ]/16V4 (111 26)
XX = -(28 + 1) /128S2 (111 27)
n n-1
The other cross product terms can be determined in a similar manner.
= 8 8 2
Yy o= -(8s + 1) / 1288 (I11 28)
XY . = -(45 + 1) / 1285° (111 29)
n n-1

ITI-5
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A graph of Equation (III 15) as a function of (S) is shown in Figure III-3

where it is compared to equivalent simulation results.
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APPENDIX IV

LISTING OF DIGITAL RECEIVER WITHOUT
SAMPLE STORAGE BIT SYNCHRONIZATION
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MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



